Python google.protobuf.text_format 模块,PrintMessage() 实例源码

我们从Python开源项目中,提取了以下14个代码示例,用于说明如何使用google.protobuf.text_format.PrintMessage()

项目:Vector-Tiles-Reader-QGIS-Plugin    作者:geometalab    | 项目源码 | 文件源码
def testPrintMessageSetByFieldNumber(self):
    out = text_format.TextWriter(False)
    message = unittest_mset_pb2.TestMessageSetContainer()
    ext1 = unittest_mset_pb2.TestMessageSetExtension1.message_set_extension
    ext2 = unittest_mset_pb2.TestMessageSetExtension2.message_set_extension
    message.message_set.Extensions[ext1].i = 23
    message.message_set.Extensions[ext2].str = 'foo'
    text_format.PrintMessage(message, out, use_field_number=True)
    self.CompareToGoldenText(out.getvalue(), '1 {\n'
                             '  1545008 {\n'
                             '    15: 23\n'
                             '  }\n'
                             '  1547769 {\n'
                             '    25: \"foo\"\n'
                             '  }\n'
                             '}\n')
    out.close()
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def testPrintMessageSetByFieldNumber(self):
    out = text_format.TextWriter(False)
    message = unittest_mset_pb2.TestMessageSetContainer()
    ext1 = unittest_mset_pb2.TestMessageSetExtension1.message_set_extension
    ext2 = unittest_mset_pb2.TestMessageSetExtension2.message_set_extension
    message.message_set.Extensions[ext1].i = 23
    message.message_set.Extensions[ext2].str = 'foo'
    text_format.PrintMessage(message, out, use_field_number=True)
    self.CompareToGoldenText(out.getvalue(), '1 {\n'
                             '  1545008 {\n'
                             '    15: 23\n'
                             '  }\n'
                             '  1547769 {\n'
                             '    25: \"foo\"\n'
                             '  }\n'
                             '}\n')
    out.close()
项目:go2mapillary    作者:enricofer    | 项目源码 | 文件源码
def testPrintMessageSetByFieldNumber(self):
    out = text_format.TextWriter(False)
    message = unittest_mset_pb2.TestMessageSetContainer()
    ext1 = unittest_mset_pb2.TestMessageSetExtension1.message_set_extension
    ext2 = unittest_mset_pb2.TestMessageSetExtension2.message_set_extension
    message.message_set.Extensions[ext1].i = 23
    message.message_set.Extensions[ext2].str = 'foo'
    text_format.PrintMessage(message, out, use_field_number=True)
    self.CompareToGoldenText(out.getvalue(), '1 {\n'
                             '  1545008 {\n'
                             '    15: 23\n'
                             '  }\n'
                             '  1547769 {\n'
                             '    25: \"foo\"\n'
                             '  }\n'
                             '}\n')
    out.close()
项目:rpcDemo    作者:Tangxinwei    | 项目源码 | 文件源码
def testPrintMessageSetByFieldNumber(self):
    out = text_format.TextWriter(False)
    message = unittest_mset_pb2.TestMessageSetContainer()
    ext1 = unittest_mset_pb2.TestMessageSetExtension1.message_set_extension
    ext2 = unittest_mset_pb2.TestMessageSetExtension2.message_set_extension
    message.message_set.Extensions[ext1].i = 23
    message.message_set.Extensions[ext2].str = 'foo'
    text_format.PrintMessage(message, out, use_field_number=True)
    self.CompareToGoldenText(out.getvalue(), '1 {\n'
                             '  1545008 {\n'
                             '    15: 23\n'
                             '  }\n'
                             '  1547769 {\n'
                             '    25: \"foo\"\n'
                             '  }\n'
                             '}\n')
    out.close()
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def change_model(proto, layers=None):
  model = util.ReadModel(proto)
  if layers is None:
    layers = ['image_hidden1', 'image_hidden2', 'image_hidden3',
              'text_hidden1', 'text_hidden2', 'text_hidden3',
              'image_layer', 'text_layer', 'joint_layer',
              'image_tied_hidden', 'text_tied_hidden',
              'image_hidden2_recon', 'text_hidden2_recon',
              'cross_image_hidden2_recon', 'cross_text_hidden2_recon']

  for layer in layers:
    try:
      layer_proto = next(lay for lay in model.layer if lay.name == layer)
      layer_proto.dimensions = dimensions
    except StopIteration:
        pass

  with open(proto, 'w') as f:
    text_format.PrintMessage(model, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def change_data(proto, datas=None):
  proto_cont = util.ReadData(proto)
  if datas is None:
    datas = []
    for m in ['image', 'text']:
      for i in [1,2,3]:
        for t in ['train', 'validation', 'test']:
          datas += [m+'_'+'hidden'+str(i)+'_'+t]
          datas += ['bae_'+m+'_'+'hidden'+str(i)+'_'+t]
          datas += ['bae_'+m+'_'+'hidden'+str(i)+'_'+t+'_all']
          datas += ['corr_'+m+'_hidden'+str(i)+'_'+t]
  for data in datas:
    try:
      data_proto = next(lay for lay in proto_cont.data if lay.name == data)
      data_proto.dimensions[0] = dimensions
    except StopIteration:
        pass
  with open(proto, 'w') as f:
    text_format.PrintMessage(proto_cont, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def change_model(proto, layers=None):
  model = util.ReadModel(proto)
  if layers is None:
    layers = ['image_hidden1', 'image_hidden2', 'image_hidden3',
              'text_hidden1', 'text_hidden2', 'text_hidden3',
              'image_layer', 'text_layer', 'joint_layer',
              'image_tied_hidden', 'text_tied_hidden',
              'image_hidden2_recon', 'text_hidden2_recon',
              'cross_image_hidden2_recon', 'cross_text_hidden2_recon']

  for layer in layers:
    try:
      layer_proto = next(lay for lay in model.layer if lay.name == layer)
      layer_proto.dimensions = dimensions
    except StopIteration:
        pass

  with open(proto, 'w') as f:
    text_format.PrintMessage(model, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def change_data(proto, datas=None):
  proto_cont = util.ReadData(proto)
  if datas is None:
    datas = []
    for m in ['image', 'text']:
      for i in [1,2,3]:
        for t in ['train', 'validation', 'test']:
          datas += [m+'_'+'hidden'+str(i)+'_'+t]
          datas += ['bae_'+m+'_'+'hidden'+str(i)+'_'+t]
          datas += ['bae_'+m+'_'+'hidden'+str(i)+'_'+t+'_all']
          datas += ['corr_'+m+'_hidden'+str(i)+'_'+t]
  for data in datas:
    try:
      data_proto = next(lay for lay in proto_cont.data if lay.name == data)
      data_proto.dimensions[0] = dimensions
    except StopIteration:
        pass
  with open(proto, 'w') as f:
    text_format.PrintMessage(proto_cont, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def change_model(proto, layers=None):
  model = util.ReadModel(proto)
  if layers is None:
    layers = ['image_hidden1', 'image_hidden2', 'image_hidden3',
              'text_hidden1', 'text_hidden2', 'text_hidden3',
              'image_layer', 'text_layer', 'joint_layer',
              'image_tied_hidden', 'text_tied_hidden',
              'image_hidden2_recon', 'text_hidden2_recon',
              'cross_image_hidden2_recon', 'cross_text_hidden2_recon']

  for layer in layers:
    try:
      layer_proto = next(lay for lay in model.layer if lay.name == layer)
      layer_proto.dimensions = dimensions
    except StopIteration:
        pass

  with open(proto, 'w') as f:
    text_format.PrintMessage(model, f)
项目:deepwater-nae    作者:h2oai    | 项目源码 | 文件源码
def start(self, rank):
        self.rank = rank

        if len(self.gpus) > 0:
            self.device = self.gpus[rank]
            if debug:
                s = 'solver gpu %d' % self.gpus[self.rank] + \
                    ' pid %d' % os.getpid() + ' size %d' % self.size + \
                    ' rank %d' % self.rank
                print(s, file = sys.stderr)
            caffe.set_mode_gpu()
            caffe.set_device(self.device)
            caffe.set_solver_count(self.size)
            caffe.set_solver_rank(self.rank)
            caffe.set_multiprocess(True)
        else:
            print('solver cpu', file = sys.stderr)
            caffe.set_mode_cpu()

        if self.cmd.graph.endswith('.json'):
            with open(self.cmd.graph, mode = 'r') as f:
                graph = caffe_pb2.SolverParameter()
                text_format.Merge(f.read(), graph)
                self.graph = graph
        else:
            self.graph = self.solver_graph()

        import tempfile
        with tempfile.NamedTemporaryFile(mode = 'w+', delete = False) as f:
            text_format.PrintMessage(self.graph, f)
            tmp = f.name
        self.caffe = caffe.AdamSolver(tmp)

        if self.uid:
            self.nccl = caffe.NCCL(self.caffe, self.uid)
            self.nccl.bcast()
            self.caffe.add_callback(self.nccl)
            if self.caffe.param.layer_wise_reduce:
                self.caffe.net.after_backward(self.nccl)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def EditTrainers(data_dir, model_dir, rep_dir, numsplits):
  tnames = ['train_CD_image_layer1.pbtxt',
            'train_CD_image_layer2.pbtxt',
            'train_CD_text_layer1.pbtxt',
            'train_CD_text_layer2.pbtxt',
            'train_CD_joint_layer.pbtxt']
  for tname in tnames:
    t_op_file = os.path.join('trainers', 'dbn', tname)
    t_op = util.ReadOperation(t_op_file)
    if 'layer1' in tname:
      t_op.data_proto_prefix = data_dir
    else:
      t_op.data_proto_prefix = rep_dir
    t_op.checkpoint_directory = model_dir
    with open(t_op_file, 'w') as f:
      text_format.PrintMessage(t_op, f)

  t_op_file = os.path.join('trainers', 'classifiers', 'baseclassifier.pbtxt')
  t_op = util.ReadOperation(t_op_file)
  for i in range(1, numsplits+1):
    t_op_file = os.path.join('trainers', 'classifiers', 'split_%d.pbtxt' % i)
    t_op.data_proto_prefix = rep_dir
    t_op.data_proto = os.path.join('split_%d' % i, 'data.pbtxt')
    t_op.checkpoint_prefix = model_dir
    t_op.checkpoint_directory = os.path.join('classifiers','split_%d' % i)  
    with open(t_op_file, 'w') as f:
      text_format.PrintMessage(t_op, f)

  # Change prefix in multimodal dbn model
  mnames = ['multimodal_dbn.pbtxt']
  for mname in mnames:
    model_file = os.path.join('models', mname)
    model = util.ReadModel(model_file)
    model.prefix = model_dir
    with open(model_file, 'w') as f:
      text_format.PrintMessage(model, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def main():
  data_dir = sys.argv[1]
  model_dir = sys.argv[2]
  rep_dir = sys.argv[3]
  gpu_mem = sys.argv[4]
  main_mem = sys.argv[5]
  numsplits = int(sys.argv[6])

  data_pbtxt_file = os.path.join(data_dir, 'flickr.pbtxt')
  data_pb = util.ReadData(data_pbtxt_file)
  EditPaths(data_pb, data_dir, gpu_mem, main_mem)
  with open(data_pbtxt_file, 'w') as f:
    text_format.PrintMessage(data_pb, f)
  EditTrainers(data_dir, model_dir, rep_dir, numsplits)

  data_pbtxt_file_z = os.path.join(data_dir, 'flickr_z.pbtxt')
  data_pbtxt_file_nnz = os.path.join(data_dir, 'flickr_nnz.pbtxt')
  if not os.path.exists(data_pbtxt_file_z):
    CreateMissingTextData(data_pb, data_pbtxt_file_z, data_pbtxt_file_nnz)
  data_pb = util.ReadData(data_pbtxt_file_z)
  EditPaths(data_pb, data_dir, gpu_mem, main_mem)
  with open(data_pbtxt_file_z, 'w') as f:
    text_format.PrintMessage(data_pb, f)
  data_pb = util.ReadData(data_pbtxt_file_nnz)
  EditPaths(data_pb, data_dir, gpu_mem, main_mem)
  with open(data_pbtxt_file_nnz, 'w') as f:
    text_format.PrintMessage(data_pb, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def WritePbtxt(output_file, pb):
  with open(output_file, 'w') as f:
    text_format.PrintMessage(pb, f)
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def main():
  data_pbtxt = sys.argv[1]
  output_dir = sys.argv[2]
  prefix = sys.argv[3]
  r = int(sys.argv[4])
  gpu_mem = sys.argv[5]
  main_mem = sys.argv[6]
  if not os.path.isdir(output_dir):
    os.makedirs(output_dir)

  rep_dict, stats_files = MakeDict(data_pbtxt)
  reps = rep_dict.keys()

  indices_file = os.path.join(prefix, 'splits', 'train_indices_%d.npy' % r)
  if os.path.exists(indices_file):
    train = np.load(indices_file)
    valid = np.load(os.path.join(prefix, 'splits', 'valid_indices_%d.npy' % r))
    test = np.load(os.path.join(prefix, 'splits', 'test_indices_%d.npy' % r))
  else:
    print 'Creating new split.'
    indices = np.arange(25000)
    np.random.shuffle(indices)
    train = indices[:10000]
    valid = indices[10000:15000]
    test = indices[15000:]
    np.save(os.path.join(prefix, 'splits', 'train_indices_%d.npy' % r), train)
    np.save(os.path.join(prefix, 'splits', 'valid_indices_%d.npy' % r), valid)
    np.save(os.path.join(prefix, 'splits', 'test_indices_%d.npy' % r), test)


  print 'Splitting data'
  dataset_pb = deepnet_pb2.Dataset()
  dataset_pb.name = 'flickr_split_%d' % r
  dataset_pb.gpu_memory = gpu_mem
  dataset_pb.main_memory = main_mem
  for rep in reps:
    data = rep_dict[rep]
    stats_file = stats_files[rep]
    DumpDataSplit(data[train], output_dir, 'train_%s' % rep, dataset_pb, stats_file)
    DumpDataSplit(data[valid], output_dir, 'valid_%s' % rep, dataset_pb, stats_file)
    DumpDataSplit(data[test], output_dir, 'test_%s' % rep, dataset_pb, stats_file)

  print 'Splitting labels'
  labels = np.load(os.path.join(prefix, 'labels.npy')).astype('float32')
  DumpLabelSplit(labels[train,], output_dir, 'train_labels', dataset_pb)
  DumpLabelSplit(labels[valid,], output_dir, 'valid_labels', dataset_pb)
  DumpLabelSplit(labels[test,], output_dir, 'test_labels', dataset_pb)

  #d = 'indices'
  #np.save(os.path.join(output_dir, 'train_%s.npy' % d), train)
  #np.save(os.path.join(output_dir, 'valid_%s.npy' % d), valid)
  #np.save(os.path.join(output_dir, 'test_%s.npy' % d), test)

  with open(os.path.join(output_dir, 'data.pbtxt'), 'w') as f:
    text_format.PrintMessage(dataset_pb, f)

  print 'Output written in directory %s' % output_dir