Python heapq 模块,heappush() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用heapq.heappush()

项目:MTransE    作者:muhaochen    | 项目源码 | 文件源码
def kNN_entity(self, vec, topk=10, method=0, self_vec_id=None):
        q = []
        for i in range(len(self.vec_e)):
            #skip self
            if self_vec_id != None and i == self_vec_id:
                continue
            if method == 1:
                dist = SP.distance.cosine(vec, self.vec_e[i])
            else:
                dist = LA.norm(vec - self.vec_e[i])
            if len(q) < topk:
                HP.heappush(q, self.index_dist(i, dist))
            else:
                #indeed it fetches the biggest
                tmp = HP.nsmallest(1, q)[0]
                if tmp.dist > dist:
                    HP.heapreplace(q, self.index_dist(i, dist) )
        rst = []
        while len(q) > 0:
            item = HP.heappop(q)
            rst.insert(0, (self.vocab_e[self.vec2e[item.index]], item.dist))
        return rst

    #given entity name, find kNN
项目:whatstyle    作者:mikr    | 项目源码 | 文件源码
def update_evaluations(formatter,  # type: CodeFormatter
                       evaluations,  # type: List[AttemptResult]
                       finished_styles,  # type: List[AttemptResult]
                       bestdist  # type: Sequence[int]
                       ):
    # type: (...) -> Tuple[bool, bool, Sequence[int]]
    attemptresult = heapq.heappop(evaluations)
    nested_round = False
    if bestdist is None or (distquality(attemptresult.distance) < distquality(bestdist)):
        bestdist = attemptresult.distance
        heapq.heappush(evaluations, attemptresult)
    else:
        # We found a style that could no longer be improved by adding a single option value.
        heapq.heappush(finished_styles, attemptresult)
        nested_styles = formatter.nested_derivations(attemptresult.formatstyle)
        if not nested_styles:
            # This formatstyle does not unlock more options.
            return True, nested_round, bestdist
        # Restart the optimization from scratch with the attemptresult augmented with
        # every nested option as seed styles.
        bestdist = None
        ndist = (HUGE_DISTANCE, HUGE_DISTANCE, HUGE_DISTANCE, HUGE_DISTANCE)
        evaluations[:] = [AttemptResult(ndist, s) for s in nested_styles]
        nested_round = True
    return False, nested_round, bestdist
项目:speccer    作者:bensimner    | 项目源码 | 文件源码
def __next__(self):
        if not self._pq:
            raise StopIteration

        pair = heapq.heappop(self._pq)
        t = pair.x

        for i in range(self._n):
            v = t[i] + 1
            tp = t[:i] + (v,) + t[i + 1:]

            if v > self.max_sizes[i]:
                if i not in self.continuation:
                    self.continuation[i] = tp
                continue

            if tp not in self._memo:
                pair = PairGen._Pair(*tp)
                heapq.heappush(self._pq, pair)
                self._memo[tp] = True

        return t
项目:deb-python-pyngus    作者:openstack    | 项目源码 | 文件源码
def need_processing(self):
        """A utility to help determine which connections need
        processing. Returns a triple of lists containing those connections that
        0) need to read from the network, 1) need to write to the network, 2)
        waiting for pending timers to expire.  The timer list is sorted with
        the connection next expiring at index 0.
        """
        readers = []
        writers = []
        timer_heap = []
        for c in iter(self._connections.values()):
            if c.needs_input > 0:
                readers.append(c)
            if c.has_output > 0:
                writers.append(c)
            if c.deadline:
                heapq.heappush(timer_heap, (c.next_tick, c))
        timers = []
        while timer_heap:
            x = heapq.heappop(timer_heap)
            timers.append(x[1])

        return (readers, writers, timers)
项目:code    作者:ActiveState    | 项目源码 | 文件源码
def dijkstra(adj, costs, s, t):
    ''' Return predecessors and min distance if there exists a shortest path 
        from s to t; Otherwise, return None '''
    Q = []     # priority queue of items; note item is mutable.
    d = {s: 0} # vertex -> minimal distance
    Qd = {}    # vertex -> [d[v], parent_v, v]
    p = {}     # predecessor
    visited_set = set([s])

    for v in adj.get(s, []):
        d[v] = costs[s, v]
        item = [d[v], s, v]
        heapq.heappush(Q, item)
        Qd[v] = item

    while Q:
        print Q
        cost, parent, u = heapq.heappop(Q)
        if u not in visited_set:
            print 'visit:', u
            p[u]= parent
            visited_set.add(u)
            if u == t:
                return p, d[u]
            for v in adj.get(u, []):
                if d.get(v):
                    if d[v] > costs[u, v] + d[u]:
                        d[v] =  costs[u, v] + d[u]
                        Qd[v][0] = d[v]    # decrease key
                        Qd[v][1] = u       # update predecessor
                        heapq._siftdown(Q, 0, Q.index(Qd[v]))
                else:
                    d[v] = costs[u, v] + d[u]
                    item = [d[v], u, v]
                    heapq.heappush(Q, item)
                    Qd[v] = item

    return None
项目:abusehelper    作者:Exploit-install    | 项目源码 | 文件源码
def _merge(sorted_iterables):
    """
    >>> list(_merge([(1, 2, 3), (0, 2, 4)]))
    [0, 1, 2, 2, 3, 4]
    """

    heap = []

    for iterable in sorted_iterables:
        iterator = iter(iterable)

        for value in iterator:
            heapq.heappush(heap, (value, iterator))
            break

    while heap:
        value, iterator = heapq.heappop(heap)

        yield value

        for value in iterator:
            heapq.heappush(heap, (value, iterator))
            break
项目:ltls    作者:kjasinska    | 项目源码 | 文件源码
def create_ranking2(edge_weight, k, adj, num):
    sink = len(adj)
    heaps = [[] for i in xrange(sink + 1)]
    heaps[0] = [(0, [])]

    for current in xrange(sink):
        for child in adj[current]:
            for length, path in heaps[current]:
                new_path = list(path)
                new_path.append(current)
                # this can be done better using this heapreplace
                ew = edge_weight[0, num[(current, child)]]
                heapq.heappush(heaps[child], (length + ew, new_path))
                heaps[child] = heapq.nlargest(k, heaps[child])
                # TODO what with equal lenght paths?
    # result: heaps[sink]
    return [(length, tuple(zip(nodes, nodes[1:] + [sink]))) for length, nodes in heaps[sink]]
项目:MTransE    作者:muhaochen    | 项目源码 | 文件源码
def kNN_relation(self, vec, topk=10, method=0, self_vec_id=None):
        q = []
        for i in range(len(self.vec_r)):
            #skip self
            if self_vec_id != None and i == self_vec_id:
                continue
            if method == 1:
                dist = SP.distance.cosine(vec, self.vec_r[i])
            else:
                dist = LA.norm(vec - self.vec_r[i])
            if len(q) < topk:
                HP.heappush(q, self.index_dist(i, dist))
            else:
                #indeed it fetches the biggest
                tmp = HP.nsmallest(1, q)[0]
                if tmp.dist > dist:
                    HP.heapreplace(q, self.index_dist(i, dist) )
        rst = []
        while len(q) > 0:
            item = HP.heappop(q)
            rst.insert(0, (self.vocab_r[self.vec2r[item.index]], item.dist))
        return rst

    #given relation name, find kNN
项目:technical-interviews    作者:darvid7    | 项目源码 | 文件源码
def add_number_to_heap(num):
    """Adds a number to a heap, assuming the heaps correctly represent the lower half of numbers and the upper half.
    So the only factor taken into account is the number of items in the heaps.
    If same number of items add to lower half, else add to half with the least number of items.
    """
    if len(lower_half_max_heap) == 0:
        heapq.heappush(lower_half_max_heap, num * -1)
    elif len(upper_half_min_heap) == 0:
        heapq.heappush(upper_half_min_heap, num)
    else:
        # Assume the heap is a valid split of the data.
        # Difference will be positive if upper_half_min_heap has more elements, else negative.
        difference = len(upper_half_min_heap) - len(lower_half_max_heap)
        if difference >= 1:
            # upper_half_min_heap has more elements, should put this next number in lower_half_max_heap.
            heapq.heappush(lower_half_max_heap, num * -1)
        elif difference <= -1:
            # lower_half_max_heap has more elements, should put this next number in upper_half_min_heap.
            heapq.heappush(upper_half_min_heap, num)
        else:
            # Can push to either, difference is 0.
            heapq.heappush(lower_half_max_heap, num * -1)
项目:technical-interviews    作者:darvid7    | 项目源码 | 文件源码
def rebalance_heaps():
    """Ensures that no element in the upper half is less than any element in the lower half."""
    if not (len(lower_half_max_heap) >= 1 and len(upper_half_min_heap) >= 1):
        return  # Don't need to rebalance if one of them is empty.

    max_from_lower_half = lower_half_max_heap[0] * -1
    min_from_upper_half = upper_half_min_heap[0]

    if min_from_upper_half < max_from_lower_half:
        # Upper half has smaller elements than that of lower half.
        while min_from_upper_half < max_from_lower_half:
            # Swap elements.
            max_from_lower_half = heapq.heappop(lower_half_max_heap) * -1
            min_from_upper_half = heapq.heappop(upper_half_min_heap)
            heapq.heappush(lower_half_max_heap, min_from_upper_half * -1)
            heapq.heappush(upper_half_min_heap, max_from_lower_half)
            # heapq will handle restructuring heap so smallest values will be at index 0.
            max_from_lower_half = lower_half_max_heap[0] * -1
            min_from_upper_half = upper_half_min_heap[0]
项目:technical-interviews    作者:darvid7    | 项目源码 | 文件源码
def dijkstra(graph, source):
    pq = []
    nodes = graph.get_all_vertices()
    distances = [math.inf] * len(nodes)
    path = [-1] * len(nodes)
    distances[source.index] = 0
    for node in nodes:
        # Store as (priority, task) tuples, heapq will sort on first element.
        heapq.heappush(pq, (distances[node.index], node))
    while pq:
        # Assumes non negative weights, so when popping a node it is the best way to get there.
        dist, node = heapq.heappop(pq)
        for edge in graph.get_adjacent_edges(node):
            # Note: can't terminate early and do this.
            # Eg: (s) -3-> (c) -12-> (d)
            #      \-20->(d) will be wrong
            # if distances[edge.destination.index] != math.inf:  # We already have the shortest path to this node.
            #     continue
            if relax(node, edge.destination, edge, distances):
                # Found a better way to get to a next node, add that to the pq and set the parent.
                heapq.heappush(pq, (distances[edge.destination.index], edge.destination))
                path[edge.destination.index] = node.index
    return distances, path  # Shortest path from source to any other node in distances.
项目:algorithm_course    作者:hrwhisper    | 项目源码 | 文件源码
def dijkstra(s, t, g):
    q = []
    dis = collections.defaultdict(lambda: 0x7fffffff)  # [0x7fffffff] * len(g)
    vis = collections.defaultdict(bool)  # [False] * len(g)
    dis[s] = 0
    heapq.heappush(q, Node(s, 0))

    while q:
        cur = heapq.heappop(q).to
        if vis[cur]: continue
        vis[cur] = True
        for to, val in g[cur]:
            if not vis[to] and dis[cur] + val < dis[to]:
                dis[to] = dis[cur] + val
                heapq.heappush(q, Node(to, dis[to]))
    return dis
项目:lc-all-solutions    作者:csujedihy    | 项目源码 | 文件源码
def getSkyline(self, buildings):
        """
        :type buildings: List[List[int]]
        :rtype: List[List[int]]
        """
        hs = []
        heap = []
        for b in buildings:
            hs.append((b[0], -b[2]))
            hs.append((b[1], b[2]))
        hs.sort()
        ans = []
        pre = cur = None
        for h in hs:
            pos = h[0]
            height = h[1]
            if height < 0:
                heapq.heappush(heap, height)
            else:
                i = heap.index(-height)
                heap[i] = heap[-1]
                heap.pop()
                if i < len(heap):
                    heapq._siftup(heap, i)
                    heapq._siftdown(heap, 0, i)
            if heap:
                cur = heap[0]
                if cur != pre:
                    ans.append((pos, -1 * cur))
                    pre = cur
            else:
                ans.append((pos, 0))

        return ans
项目:lc-all-solutions    作者:csujedihy    | 项目源码 | 文件源码
def addNum(self, num):
        """
        Adds a num into the data structure.
        :type num: int
        :rtype: void
        """
        left = self.left
        right = self.right
        if self.median is None:
            self.median = num
            return

        if num <= self.median:
            heapq.heappush(left, -num)
        else:
            heapq.heappush(right, num)

        if len(left) > len(right) + 1:
            top = -heapq.heappop(left)
            heapq.heappush(right, self.median)
            self.median = top
        if len(right) > len(left) + 1:
            top = heapq.heappop(right)
            heapq.heappush(left, -self.median)
            self.median = top
项目:lc-all-solutions    作者:csujedihy    | 项目源码 | 文件源码
def getNewsFeed(self, userId):
        """
        Retrieve the 10 most recent tweet ids in the user's news feed. Each item in the news feed must be posted by users who the user followed or by the user herself. Tweets must be ordered from most recent to least recent.
        :type userId: int
        :rtype: List[int]
        """
        ret = []
        heap = []
        if self.tweets[userId]:
            heapq.heappush(heap, self.tweets[userId][-1])

        for followeeId in self.friendship[userId]:
            if self.tweets[followeeId]:
                heapq.heappush(heap, self.tweets[followeeId][-1])
        cnt = 10
        while heap and cnt > 0:
            _, tid, uid, idx = heapq.heappop(heap)
            ret.append(tid)
            if idx > 0:
                heapq.heappush(heap, self.tweets[uid][idx - 1])
            cnt -= 1
        return ret
项目:lc-all-solutions    作者:csujedihy    | 项目源码 | 文件源码
def kthSmallest(self, matrix, k):
        """
        :type matrix: List[List[int]]
        :type k: int
        :rtype: int
        """
        visited = {(0, 0)}
        heap = [(matrix[0][0], (0, 0))]

        while heap:
            val, (i, j) = heapq.heappop(heap)
            k -= 1
            if k == 0:
                return val
            if i + 1 < len(matrix) and (i + 1, j) not in visited:
                heapq.heappush(heap, (matrix[i + 1][j], (i + 1, j)))
                visited.add((i + 1, j))
            if j + 1 < len(matrix) and (i, j + 1) not in visited:
                heapq.heappush(heap, (matrix[i][j + 1], (i, j + 1)))
                visited.add((i, j + 1))
项目:lc-all-solutions    作者:csujedihy    | 项目源码 | 文件源码
def nthSuperUglyNumber(self, n, primes):
        """
        :type n: int
        :type primes: List[int]
        :rtype: int
        """
        dp = [0] * (n + 1)
        dp[1] = 1
        heap = []
        indexes = [1] * len(primes)
        for i in xrange(0, len(primes)):
            heapq.heappush(heap, (dp[indexes[i]] * primes[i],i))

        for i in xrange(2, n + 1):
            minV = heap[0][0]
            dp[i] = minV
            while heap[0][0] == minV:
                value, xi = heapq.heappop(heap)
                indexes[xi] += 1
                heapq.heappush(heap, (dp[indexes[xi]] * primes[xi], xi))
        return dp[-1]
项目:base_function    作者:Rockyzsu    | 项目源码 | 文件源码
def basic_usage():
    h=[]
    heapq.heappush(h,10)
    print h
    heapq.heappush(h,1)
    print h
    heapq.heappush(h,0)
    print h
    heapq.heappush(h,3)
    print h
    heapq.heappush(h,6)
    print h
    heapq.heappush(h,7)
    print h
    heapq.heappush(h,11)
    print h
    heapq.heappush(h,9)
    print h
    heapq.heappush(h,7)
    print h
    heapq.heappush(h,2)
    print h
    p=heapq.heappop(h)
    print h
    print p
项目:Qaf    作者:jonathanabennett    | 项目源码 | 文件源码
def heatmap(self, source_x,source_y):
        log.debug("Updating Heatmap.")
        for tile in self.grid.values():
            tile.value = sys.maxsize
            tile.previous = None
            tile.visited = False
        l_open = []
        source = self.lookup(source_x,source_y)
        if source: l_open.append((0,source,source)) #(value,cell,previous)

        while l_open:
            value,cell,previous = heapq.heappop(l_open)
            if cell.visited: continue
            cell.visited = True
            cell.previous = previous
            cell.value = value
            for x,y in self.get_neighbor_addrs(cell.x,cell.y):
                c = self.lookup(x,y)
                if c and not (c.visited or c.blocked):
                    heapq.heappush(l_open, (value+1, c, cell))

        return self.render(0,self.width, 0,self.height,heatp=True)
项目:g4gproblems    作者:prathamtandon    | 项目源码 | 文件源码
def median_stream_ints(arr):

    less_than_med = []
    greater_than_med = []

    for i in range(len(arr)):
        print 'Median after adding:', arr[i]
        if len(less_than_med) == 0 and len(greater_than_med) == 0:
            heapq.heappush(less_than_med, -arr[i])  # max-heap in Python implemented by negation.
        elif arr[i] < abs(less_than_med[0]):
            heapq.heappush(less_than_med, -arr[i])
            if len(less_than_med) - len(greater_than_med) > 1:
                root = abs(heapq.heappop(less_than_med))
                heapq.heappush(greater_than_med, root)
        elif len(greater_than_med) == 0 or arr[i] > greater_than_med[0]:
            heapq.heappush(greater_than_med, arr[i])
            if len(greater_than_med) - len(less_than_med) > 1:
                root = heapq.heappop(greater_than_med)
                heapq.heappush(less_than_med, -root)
        if len(less_than_med) == len(greater_than_med):
            print (greater_than_med[0] - less_than_med[0]) / 2
        else:
            print abs(less_than_med[0]) if len(less_than_med) > len(greater_than_med) else greater_than_med[0]
项目:DrQA    作者:facebookresearch    | 项目源码 | 文件源码
def search_docs(inputs, max_ex=5, opts=None):
    """Given a set of document ids (returned by ranking for a question), search
    for top N best matching (by heuristic) paragraphs that contain the answer.
    """
    if not opts:
        raise RuntimeError('Options dict must be supplied.')

    doc_ids, q_tokens, answer = inputs
    examples = []
    for i, doc_id in enumerate(doc_ids):
        for j, paragraph in enumerate(re.split(r'\n+', fetch_text(doc_id))):
            found = find_answer(paragraph, q_tokens, answer, opts)
            if found:
                # Reverse ranking, giving priority to early docs + paragraphs
                score = (found[0], -i, -j, random.random())
                if len(examples) < max_ex:
                    heapq.heappush(examples, (score, found[1]))
                else:
                    heapq.heappushpop(examples, (score, found[1]))
    return [e[1] for e in examples]
项目:Flask-WhooshAlchemy3    作者:blakev    | 项目源码 | 文件源码
def __iter__(self):
        """ Sort the results by Whoosh rank; relevance. """
        _iter = super(QueryProxy, self).__iter__()

        if self._whoosh_results is None or self._order_by is not False:
            return _iter

        ordered = []

        for row in _iter:
            # we have to convert the primary-key, as stored in the SQL database
            #  into a string because the key is stored as an `ID` in whoosh.
            #  The ID field is string only; plus, this allows for uuid pk's.
            str_pk = str(getattr(row, self._pk))
            heapq.heappush(
                ordered, (self._whoosh_results[str_pk], row))

        def inner():
            while ordered:
                yield heapq.heappop(ordered)[1]
        return inner()
项目:texta    作者:texta-tk    | 项目源码 | 文件源码
def _create_clusterings(self,dendrogram):
        clusterings = [[(-(dendrogram.distance),dendrogram)]]

        for threshold in np.linspace(-self._max_dist,-self._min_dist,self.number_of_steps)[1:]:
            new_clustering = clusterings[-1][:] # set new clustering to be equivalent to previous
            # Expand previous clustering
            while new_clustering[0][0] < threshold and new_clustering[0][1].is_cluster():
                expanded_cluster = heapq.heappop(new_clustering)[1]
                left = expanded_cluster.left
                right = expanded_cluster.right

                if left.is_cluster():
                    heapq.heappush(new_clustering,(-left.distance,left))
                else:
                    heapq.heappush(new_clustering,(-(self._min_dist-1),left))

                if right.is_cluster():
                    heapq.heappush(new_clustering,(-right.distance,right))
                else:
                    heapq.heappush(new_clustering,(-(self._min_dist-1),right))      

            clusterings.append(new_clustering)

        return clusterings
项目:Leetcode    作者:95subodh    | 项目源码 | 文件源码
def nthSuperUglyNumber(self, n, primes):
        """
        :type n: int
        :type primes: List[int]
        :rtype: int
        """
        uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
        uglies[0] = 1

        for k, p in enumerate(primes):
            heapq.heappush(heap, (p, k))
            ugly_set.add(p)

        for i in xrange(1, n):
            uglies[i], k = heapq.heappop(heap)
            while (primes[k] * uglies[idx[k]]) in ugly_set:
                idx[k] += 1
            heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
            ugly_set.add(primes[k] * uglies[idx[k]])

        return uglies[-1]
项目:Leetcode    作者:95subodh    | 项目源码 | 文件源码
def nthUglyNumber(self, n):
        """
        :type n: int
        :rtype: int
        """
        l=[1]
        primes=[2,3,5]
        heapq.heapify(l)
        set1=set(l)
        n-=1
        while n>0:
            z=heapq.heappop(l)
            n-=1
            for i in primes:
                if z*i not in set1:
                    heapq.heappush(l, z*i)
                    set1.add(z*i)
        return heapq.heappop(l)
项目:algorithms    作者:keon    | 项目源码 | 文件源码
def get_skyline(LRH):
    """
    Wortst Time Complexity: O(NlogN)
    :type buildings: List[List[int]]
    :rtype: List[List[int]]
    """
    skyline, live = [], []
    i, n = 0, len(LRH)
    while i < n or live:
        if not live or i < n and LRH[i][0] <= -live[0][1]:
            x = LRH[i][0]
            while i < n and LRH[i][0] == x:
                heapq.heappush(live, (-LRH[i][2], -LRH[i][1]))
                i += 1
        else:
            x = -live[0][1]
            while live and -live[0][1] <= x:
                heapq.heappop(live)
        height = len(live) and -live[0][0]
        if not skyline or height != skyline[-1][1]:
            skyline += [x, height],
    return skyline
项目:biglambda_hadoop    作者:henry8527    | 项目源码 | 文件源码
def explore_frontier(sig, data_type, metric, max_size):
    # closure for binding sig and rules easily
    expand = producers.generate_expander(sig)
    # generate appropriate starting node based on type
    start_node = producers.e.Un(producers.parse_type(data_type))
    frontier = [(metric(start_node), start_node)]
    # go hog wild
    while True:
        # pull expression off heap, check expansions
        m, expr = heapq.heappop(frontier)
        expansions = expand(expr)
        # if there are expansions, just add them back in
        if expansions:
            for new_expr in expansions:
                heapq.heappush(frontier, (metric(new_expr), new_expr) )
        # if there aren't any expansions and the program is closed, we're done
        elif len(expr._values_from_kind("un")) == 0:
            yield m[0], expr

#------------------------------------------------------------------------------
# now we treat this module as a script - time to execute!
#------------------------------------------------------------------------------
项目:iscnlp    作者:iscnlp    | 项目源码 | 文件源码
def create_beam_items(self, beam):
        beam_items = []
        for b in xrange(len(beam)):
            config = beam[b]
            prevScore = config.score
            dense_feats = self.template.feat_template(config.nodes,
                                                      config.stack,
                                                      config.b0)
            pr_scores = self.clf.predict_proba(dense_feats)[0]
            pr_scores = np.log(pr_scores)
            predictions = zip(pr_scores, self.clf.classes_)
            valid_trans = self.get_valid_transitions(config)
            for score, (action, label) in predictions:
                if self.transitions[action] in valid_trans:
                    next_transition = valid_trans[self.transitions[action]]
                    heapq.heappush(
                        beam_items,
                        (prevScore + score, b, next_transition, label))
                    if len(beam_items) > self.beamwidth:
                        heapq.heappop(beam_items)
        return beam_items
项目:SamplingBasedPlanning    作者:ryanfarr01    | 项目源码 | 文件源码
def find_k_nearest(self, k, s_query):
        '''
        Gets KNN using heap sort
        '''
        neighbors = []
        for n in self.nodes:
            dist = np.linalg.norm(s_query - n.state)
            if dist > 0:
                hn = HeapNode(n, dist)
                heapq.heappush(neighbors, hn)

        #Check if we have <= k to choose from
        #in which case, simply return that list
        ret_list = []
        if len(neighbors) <= k:
            for k in neighbors:
                ret_list.append(k.node)
            return ret_list

        #get the k nearest neighbors
        for i in xrange(k):
            t = heapq.heappop(neighbors)
            ret_list.append(t.node)

        return ret_list
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def largest_export_versions(n):
  """Creates a filter that keeps the largest n export versions.

  Args:
    n: number of versions to keep.

  Returns:
    A filter function that keeps the n largest paths.
  """
  def keep(paths):
    heap = []
    for idx, path in enumerate(paths):
      if path.export_version is not None:
        heapq.heappush(heap, (path.export_version, idx))
    keepers = [paths[i] for _, i in heapq.nlargest(n, heap)]
    return sorted(keepers)

  return keep
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def largest_export_versions(n):
  """Creates a filter that keeps the largest n export versions.

  Args:
    n: number of versions to keep.

  Returns:
    A filter function that keeps the n largest paths.
  """
  def keep(paths):
    heap = []
    for idx, path in enumerate(paths):
      if path.export_version is not None:
        heapq.heappush(heap, (path.export_version, idx))
    keepers = [paths[i] for _, i in heapq.nlargest(n, heap)]
    return sorted(keepers)

  return keep
项目:AStar    作者:xingshuo    | 项目源码 | 文件源码
def add_open(self, node, parent=None):
        self.m_CurDepth = self.m_CurDepth + 1
        node.m_Status = STATUS_OPEN
        node.m_Parent = parent
        node.m_gScore = self.compute_g(node, parent)
        node.m_hScore = self.compute_h(node)
        node.m_fScore = node.m_gScore + node.m_hScore
        heapq.heappush(self.m_OpenList, (node.m_fScore,node))
        if self.m_CurDepth >= self.m_MaxDepth:
            goal_node = self.get_goal_node()
            if not goal_node in self.m_OpenList:
                return True
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def accumulate(self, predictions, actuals, num_positives=None):
    """Accumulate the predictions and their ground truth labels.

    After the function call, we may call peek_ap_at_n to actually calculate
    the average precision.
    Note predictions and actuals must have the same shape.

    Args:
      predictions: a list storing the prediction scores.
      actuals: a list storing the ground truth labels. Any value
      larger than 0 will be treated as positives, otherwise as negatives.
      num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
      then it's possible some true positives were missed in them. In that case,
      you can provide 'num_positives' in order to accurately track recall.

    Raises:
      ValueError: An error occurred when the format of the input is not the
      numpy 1-D array or the shape of predictions and actuals does not match.
    """
    if len(predictions) != len(actuals):
      raise ValueError("the shape of predictions and actuals does not match.")

    if not num_positives is None:
      if not isinstance(num_positives, numbers.Number) or num_positives < 0:
        raise ValueError("'num_positives' was provided but it wan't a nonzero number.")

    if not num_positives is None:
      self._total_positives += num_positives
    else:
      self._total_positives += numpy.size(numpy.where(actuals > 0))
    topk = self._top_n
    heap = self._heap

    for i in range(numpy.size(predictions)):
      if topk is None or len(heap) < topk:
        heapq.heappush(heap, (predictions[i], actuals[i]))
      else:
        if predictions[i] > heap[0][0]:  # heap[0] is the smallest
          heapq.heappop(heap)
          heapq.heappush(heap, (predictions[i], actuals[i]))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def accumulate(self, predictions, actuals, num_positives=None):
    """Accumulate the predictions and their ground truth labels.

    After the function call, we may call peek_ap_at_n to actually calculate
    the average precision.
    Note predictions and actuals must have the same shape.

    Args:
      predictions: a list storing the prediction scores.
      actuals: a list storing the ground truth labels. Any value
      larger than 0 will be treated as positives, otherwise as negatives.
      num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
      then it's possible some true positives were missed in them. In that case,
      you can provide 'num_positives' in order to accurately track recall.

    Raises:
      ValueError: An error occurred when the format of the input is not the
      numpy 1-D array or the shape of predictions and actuals does not match.
    """
    if len(predictions) != len(actuals):
      raise ValueError("the shape of predictions and actuals does not match.")

    if not num_positives is None:
      if not isinstance(num_positives, numbers.Number) or num_positives < 0:
        raise ValueError("'num_positives' was provided but it wan't a nonzero number.")

    if not num_positives is None:
      self._total_positives += num_positives
    else:
      self._total_positives += numpy.size(numpy.where(actuals > 0))
    topk = self._top_n
    heap = self._heap

    for i in range(numpy.size(predictions)):
      if topk is None or len(heap) < topk:
        heapq.heappush(heap, (predictions[i], actuals[i]))
      else:
        if predictions[i] > heap[0][0]:  # heap[0] is the smallest
          heapq.heappop(heap)
          heapq.heappush(heap, (predictions[i], actuals[i]))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def accumulate(self, predictions, actuals, num_positives=None):
    """Accumulate the predictions and their ground truth labels.

    After the function call, we may call peek_ap_at_n to actually calculate
    the average precision.
    Note predictions and actuals must have the same shape.

    Args:
      predictions: a list storing the prediction scores.
      actuals: a list storing the ground truth labels. Any value
      larger than 0 will be treated as positives, otherwise as negatives.
      num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
      then it's possible some true positives were missed in them. In that case,
      you can provide 'num_positives' in order to accurately track recall.

    Raises:
      ValueError: An error occurred when the format of the input is not the
      numpy 1-D array or the shape of predictions and actuals does not match.
    """
    if len(predictions) != len(actuals):
      raise ValueError("the shape of predictions and actuals does not match.")

    if not num_positives is None:
      if not isinstance(num_positives, numbers.Number) or num_positives < 0:
        raise ValueError("'num_positives' was provided but it wan't a nonzero number.")

    if not num_positives is None:
      self._total_positives += num_positives
    else:
      self._total_positives += numpy.size(numpy.where(actuals > 0))
    topk = self._top_n
    heap = self._heap

    for i in range(numpy.size(predictions)):
      if topk is None or len(heap) < topk:
        heapq.heappush(heap, (predictions[i], actuals[i]))
      else:
        if predictions[i] > heap[0][0]:  # heap[0] is the smallest
          heapq.heappop(heap)
          heapq.heappush(heap, (predictions[i], actuals[i]))
项目:patchmatch    作者:samyblusseau    | 项目源码 | 文件源码
def initialize_heap(offsets, weights):
    all_heaps = []
    [n, k] = offsets.shape
    for i in range(0,n):
        h = []
        for j in range(0, k):
            heapq.heappush(h, (weights[i, j], offsets[i, j]))
        all_heaps.append(h)
    return all_heaps
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def merge_by_key(bam_filenames, key_func, bam_out):
    file_cache = tk_cache.FileHandleCache(mode='rb', open_func=pysam.Samfile)
    total_reads = 0
    heap  = []

    for bam_filename in bam_filenames:
        try:
            bam = file_cache.get(bam_filename)
            first_read = bam.next()
            heapq.heappush(heap, (key_func(first_read), first_read, bam_filename))
        except StopIteration:
            pass

    while len(heap) > 0:
        # Get the minimum item and write it to the bam.
        key, read, bam_filename = heapq.heappop(heap)
        bam = file_cache.get(bam_filename)
        bam_out.write(read)
        total_reads += 1

        # Get the next read from the source bam we just wrote from
        # If that BAM file is out of reads, then we leave that one out
        try:
            next_read = bam.next()
            heapq.heappush(heap, (key_func(next_read), next_read, bam_filename))
        except StopIteration:
            pass

    return total_reads
项目:kinect-2-libras    作者:inessadl    | 项目源码 | 文件源码
def enterabs(self, time, priority, action, argument):
        """Enter a new event in the queue at an absolute time.

        Returns an ID for the event which can be used to remove it,
        if necessary.

        """
        event = Event(time, priority, action, argument)
        heapq.heappush(self._queue, event)
        return event # The ID
项目:kinect-2-libras    作者:inessadl    | 项目源码 | 文件源码
def run(self):
        """Execute events until the queue is empty.

        When there is a positive delay until the first event, the
        delay function is called and the event is left in the queue;
        otherwise, the event is removed from the queue and executed
        (its action function is called, passing it the argument).  If
        the delay function returns prematurely, it is simply
        restarted.

        It is legal for both the delay function and the action
        function to to modify the queue or to raise an exception;
        exceptions are not caught but the scheduler's state remains
        well-defined so run() may be called again.

        A questionable hack is added to allow other threads to run:
        just after an event is executed, a delay of 0 is executed, to
        avoid monopolizing the CPU when other threads are also
        runnable.

        """
        # localize variable access to minimize overhead
        # and to improve thread safety
        q = self._queue
        delayfunc = self.delayfunc
        timefunc = self.timefunc
        pop = heapq.heappop
        while q:
            time, priority, action, argument = checked_event = q[0]
            now = timefunc()
            if now < time:
                delayfunc(time - now)
            else:
                event = pop(q)
                # Verify that the event was not removed or altered
                # by another thread after we last looked at q[0].
                if event is checked_event:
                    action(*argument)
                    delayfunc(0)   # Let other threads run
                else:
                    heapq.heappush(q, event)
项目:kinect-2-libras    作者:inessadl    | 项目源码 | 文件源码
def _put(self, item, heappush=heapq.heappush):
        heappush(self.queue, item)
项目:whatstyle    作者:mikr    | 项目源码 | 文件源码
def report_best_styles(formatter, finished_styles, evaluations, bestofround, metricdesc,
                       roundnr):
    # type: (CodeFormatter, List[AttemptResult], List[AttemptResult], int, str, int) -> None
    """Report the best style and its metric for the round.
    Also report the next best styles with their metrics relative to the best style.
    """
    attempts = finished_styles[:]
    bestofround = max(0, bestofround)
    for attempt in heapq.nsmallest(bestofround, evaluations):
        heapq.heappush(attempts, attempt)
    for idx, attemptresult in enumerate(heapq.nsmallest(bestofround, attempts)):
        if idx == 0:
            bestresult = attemptresult

            bestmsg = '\nBest distance %s round %d: %s' % (metricdesc, roundnr,
                                                           attemptresult.distance)
            iprint(INFO_USER, cyan(bestmsg))
            iprint(INFO_USER, formatter.styletext(attemptresult.formatstyle))
        else:
            place = '%d. ' % (idx + 1)
            m_diff = distdifference(attemptresult.distance, bestresult.distance)
            iprint(INFO_USER, yellow('\n%sbest differential distance %s round %d: %s' %
                                     (place, metricdesc, roundnr, m_diff)))
            unique_from, unique_to = deep_difference(bestresult.formatstyle,
                                                     attemptresult.formatstyle)
            text_from = formatter.styletext(style_make(unique_from))
            text_to = formatter.styletext(style_make(unique_to))
            separator = '  |  '
            block = alignedblocks(text_from, text_to, separator, color_right=YELLOW)
            iprint(INFO_USER, block)
项目:speccer    作者:bensimner    | 项目源码 | 文件源码
def __init__(self, n=2):
        pair = PairGen._Pair(*tuple(0 for _ in range(n)))
        self._n = n
        self._memo = {}
        self._pq = []

        # max_sizes, only generate up to this.
        self.max_sizes = [-1 for _ in range(n)]
        self.continuation = {}

        heapq.heappush(self._pq, pair)
项目:speccer    作者:bensimner    | 项目源码 | 文件源码
def update(self, i):
        '''Increment max_sizes for index i
        '''
        self.max_sizes[i] += 1
        if i in self.continuation:
            t = self.continuation[i]
            pair = PairGen._Pair(*t)
            heapq.heappush(self._pq, pair)
            del self.continuation[i]
项目:conec    作者:cod3licious    | 项目源码 | 文件源码
def _create_binary_tree(self):
        """
        Create a binary Huffman tree using stored vocabulary word counts. Frequent words
        will have shorter binary codes. Called internally from `build_vocab()`.
        """
        vocab_size = len(self.vocab)
        logger.info("constructing a huffman tree from %i words" % vocab_size)
        # build the huffman tree
        heap = list(self.vocab.values())
        heapq.heapify(heap)
        for i in range(vocab_size - 1):
            min1, min2 = heapq.heappop(heap), heapq.heappop(heap)
            heapq.heappush(heap, Vocab(count=min1.count + min2.count, index=i + vocab_size, left=min1, right=min2))
        # recurse over the tree, assigning a binary code to each vocabulary word
        if heap:
            max_depth, stack = 0, [(heap[0], [], [])]
            while stack:
                node, codes, points = stack.pop()
                if node.index < vocab_size:
                    # leaf node => store its path from the root
                    node.code, node.point = codes, points
                    max_depth = max(len(codes), max_depth)
                else:
                    # inner node => continue recursion
                    points = np.array(list(points) + [node.index - vocab_size], dtype=int)
                    stack.append((node.left, np.array(list(codes) + [0], dtype=int), points))
                    stack.append((node.right, np.array(list(codes) + [1], dtype=int), points))
            logger.info("built huffman tree with maximum node depth %i" % max_depth)
项目:sketch-components    作者:ibhubs    | 项目源码 | 文件源码
def create_component(cls, sketch_layer, parent=None):
        if sketch_layer.component:
            props = sketch_layer.component.get_react_native_props()
        else:
            props = dict()
        layers = []
        for layer in sketch_layer.layers:
            if layer.is_shape_group() and layer.has_fills():
                dimensions = layer.get_dimensions()
                heapq.heappush(layers, (-dimensions['width'] *
                                        dimensions['height'], layer))
        fill_style = combine_styles(*layers[0][1].get_fill_styles())
        props['backgroundColor'] = fill_style.get('backgroundColor', None)
        component = StatusBar(parent=parent, props=props, layer=sketch_layer)
        return component
项目:deb-python-pyngus    作者:openstack    | 项目源码 | 文件源码
def _add_timer(self, deadline, callback):
        callbacks = self._timers.get(deadline)
        if callbacks is None:
            callbacks = set()
            self._timers[deadline] = callbacks
            heapq.heappush(self._timers_heap, deadline)
            if deadline < self._next_deadline:
                self._next_deadline = deadline
        callbacks.add(callback)
项目:s2sphere    作者:sidewalklabs    | 项目源码 | 文件源码
def __add_candidate(self, candidate):
        if candidate is None:
            return

        if candidate.is_terminal:
            self.__result.append(candidate.cell.id())
            return

        assert candidate.num_children == 0

        num_levels = self.__level_mod
        if candidate.cell.level() < self.__min_level:
            num_levels = 1
        num_terminals = self.__expand_children(candidate,
                                               candidate.cell,
                                               num_levels)

        if candidate.num_children == 0:
            """ Not needed due to GC """
        elif not self.__interior_covering \
                and num_terminals == 1 << self.__max_children_shift() \
                and candidate.cell.level() >= self.__min_level:
            candidate.is_terminal = True
            self.__add_candidate(candidate)
        else:
            priority = (
                (
                    (
                        (candidate.cell.level() <<
                         self.__max_children_shift()
                         ) + candidate.num_children
                    ) << self.__max_children_shift()
                ) + num_terminals
            )
            heapq.heappush(self.__pq, (priority, candidate))
项目:DL2W    作者:gauravmm    | 项目源码 | 文件源码
def accumulate(self, predictions, actuals, num_positives=None):
    """Accumulate the predictions and their ground truth labels.

    After the function call, we may call peek_ap_at_n to actually calculate
    the average precision.
    Note predictions and actuals must have the same shape.

    Args:
      predictions: a list storing the prediction scores.
      actuals: a list storing the ground truth labels. Any value
      larger than 0 will be treated as positives, otherwise as negatives.
      num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
      then it's possible some true positives were missed in them. In that case,
      you can provide 'num_positives' in order to accurately track recall.

    Raises:
      ValueError: An error occurred when the format of the input is not the
      numpy 1-D array or the shape of predictions and actuals does not match.
    """
    if len(predictions) != len(actuals):
      raise ValueError("the shape of predictions and actuals does not match.")

    if not num_positives is None:
      if not isinstance(num_positives, numbers.Number) or num_positives < 0:
        raise ValueError("'num_positives' was provided but it wan't a nonzero number.")

    if not num_positives is None:
      self._total_positives += num_positives
    else:
      self._total_positives += numpy.size(numpy.where(actuals > 0))
    topk = self._top_n
    heap = self._heap

    for i in range(numpy.size(predictions)):
      if topk is None or len(heap) < topk:
        heapq.heappush(heap, (predictions[i], actuals[i]))
      else:
        if predictions[i] > heap[0][0]:  # heap[0] is the smallest
          heapq.heappop(heap)
          heapq.heappush(heap, (predictions[i], actuals[i]))
项目:AI-Pacman    作者:AUTBS    | 项目源码 | 文件源码
def push(self, item, priority):
        # FIXME: restored old behaviour to check against old results better
        # FIXED: restored to stable behaviour
        entry = (priority, self.count, item)
        # entry = (priority, item)
        heapq.heappush(self.heap, entry)
        self.count += 1
项目:noc-orchestrator    作者:DirceuSilvaLabs    | 项目源码 | 文件源码
def _put(self, item):
        heapq.heappush(self._queue, item)