我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用input_data.read_data_sets()。
def fill_feed_dict(data_set, images_pl, labels_pl): """Fills the feed_dict for training the given step. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } Args: data_set: The set of images and labels, from input_data.read_data_sets() images_pl: The images placeholder, from placeholder_inputs(). labels_pl: The labels placeholder, from placeholder_inputs(). Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ # Create the feed_dict for the placeholders filled with the next # `batch size ` examples. images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size) feed_dict = { images_pl: images_feed, labels_pl: labels_feed, } return feed_dict
def do_eval(sess, eval_correct, midi_data_placeholder, labels_placeholder, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. midi_data_placeholder: The images placeholder. labels_placeholder: The labels placeholder. data_set: The set of midi data and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set, midi_data_placeholder, labels_placeholder) true_count += sess.run(eval_correct, feed_dict=feed_dict) precision = true_count / num_examples print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' % (num_examples, true_count, precision))
def do_eval(sess, eval_correct, images_placeholder, points_placeholder, factors_placeholder, crds_placeholder, width_placeholder, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. data_set: The set of images and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set, images_placeholder, points_placeholder, factors_placeholder, crds_placeholder, width_placeholder) true_count += sess.run(eval_correct, feed_dict=feed_dict) precision = true_count / num_examples print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' % (num_examples, true_count, precision)) return precision
def do_eval(sess, eval_correct, loss, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. images_placeholder: The images placeholder. labels_placeholder: The labels placeholder. data_set: The set of images and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size sum_loss = 0.0 for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set.next_batch(FLAGS.batch_size), train_phase=False) res = sess.run([loss, eval_correct], feed_dict=feed_dict) sum_loss += res[0] true_count += res[1] precision = true_count / num_examples avg_loss = sum_loss / (num_examples / FLAGS.batch_size) print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f Loss: %.2f' % (num_examples, true_count, precision, avg_loss)) return precision, avg_loss
def load_data(): mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trainX, trainY, testX, testY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels return trainX, trainY, testX, testY
def load_data(): # Load the data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trainX, trainY, testX, testY = mnist.train.images, mnist.train.labels, \ mnist.test.images, mnist.test.labels trainX = trainX.reshape(-1, 28, 28, 1) testX = testX.reshape(-1, 28, 28, 1) return trainX, trainY, testX, testY
def main(sigma, sample_path='samples.npy'): # provide a .npy file where 10k generated samples are saved. filename = sample_path print 'loading samples from %s'%filename mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) test_X, test_Y = mnist.test.next_batch(mnist.test.num_examples) samples = numpy.load(filename) test_ll = numpy_parzen(test_X, samples, sigma) print "Mean Log-Likelihood of test set = %.5f" % numpy.mean(test_ll) print "Std of Mean Log-Likelihood of test set = %.5f" % (numpy.std(test_ll) / 100)
def test(): mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) with tf.Session() as sess: x = tf.placeholder(tf.float32, [FLAGS.batch_size, 784], name='input') with tf.variable_scope('model'): my_netowrk = layers() output = my_netowrk.forward(x) if FLAGS.relevance: RELEVANCE = my_netowrk.lrp(output, 'simple', 1.0) # Merge all the summaries and write them out merged = tf.summary.merge_all() test_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/my_model') # Intialize variables and reload your model saver = init_vars(sess) # Extract testing data xs, ys = mnist.test.next_batch(FLAGS.batch_size) # Pass the test data to the restored model summary, relevance_test= sess.run([merged, RELEVANCE], feed_dict={x:(2*xs)-1}) test_writer.add_summary(summary, 0) # Save the images as heatmaps to visualize on tensorboard images = xs.reshape([FLAGS.batch_size,28,28,1]) images = (images + 1)/2.0 relevances = relevance_test.reshape([FLAGS.batch_size,28,28,1]) plot_relevances(relevances, images, test_writer ) test_writer.close()
def train(group): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) tr_data, tr_label = mnist.train.next_batch(mnist.train._num_examples); # Dictionary Initialization M=len(tr_data[0]); D=tsgl.dict_initializer(M,FLAGS.P); # Learning lr=FLAGS.learning_rate; pre_mse=10; for i in range(1,FLAGS.max_steps+1): # Data Shuffle idx=range(len(tr_data));np.random.shuffle(idx); batch=tr_data[idx[:FLAGS.batch_num]].transpose(); # Learning Rate Decay if(i%FLAGS.decay_num==0): lr=lr/float(FLAGS.decay_rate); # Sparse Coding A=tsgl.sparse_coding(D,batch,FLAGS,group); print(A[:,0]);print(A[:,1]); # Dictionary Learning D=tsgl.dictionary_learning(D,batch,A,lr,FLAGS); loss=np.linalg.norm(np.matmul(D,A)-batch,axis=0);mse=np.mean(loss); print(str(i)+"th MSE: "+str(mse)); mse_diff=abs(mse-pre_mse); if(mse_diff<FLAGS.mse_diff_threshold): print("Learning Done"); exit(1); pre_mse=mse; print("Max Iterations Done");
def main(argv): ################################ # Enter your code between here # ################################ mnist = input_data.read_data_sets(raw_input(), raw_input(), raw_input()) # Start TF InteractiveSession sess = tf.InteractiveSession() # Build a Softmax Regression model ## Placeholders x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) W1 = weight_variable([784,100]) b1 = bias_variable([100]) W2 = weight_variable([100,300]) b2 = bias_variable([300]) W3 = weight_variable([300,10]) b3 = bias_variable([10]) ## Initializing Variables sess.run(tf.initialize_all_variables()) # Prediction class and loss function keep_prob = tf.placeholder(tf.float32) h1 = tf.nn.relu(tf.matmul(x,W1) + b1) h2 = tf.nn.relu(tf.matmul(h1,W2) + b2) y = tf.nn.softmax(tf.matmul(h2,W3) + b3) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # Train model train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) for i in range(1000): batch = mnist.train.next_batch(100) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) # print ' '.join(map(str, [random.randint(0,9) for _ in range(len(mnist.validation.images))])) ######################## # And here # ######################## # Uncomment to get a prediction number for each image result = sess.run(tf.argmax(y,1), feed_dict={x: mnist.validation.images}) print ' '.join(map(str, result))