我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用ipdb.set_trace()。
def test_annotate_filter(self): """ Filter mentions that are 'O' mentions. the mentions should correctly identify: - character offsets - glosses - links to canonical_mentions - links to parent_mentions """ sentences, mentions = annotate_document(self._doc, self._client, mention_filter=lambda mentions:[m for m in mentions if m.type != 'O']) ipdb.set_trace() # Just assert counts. self.assertEqual(3, len(sentences)) self.assertEqual(19, len(mentions)) for m in mentions: self.assertTrue(m.ner != 'O')
def loss(self, inf_targets, inf_vads, targets, vads, mtl_fac): ''' Loss definition Only speech inference loss is defined and work quite well Add VAD cross entropy loss if you want ''' loss_v1 = tf.nn.l2_loss(inf_targets - targets) / self.batch_size loss_o = loss_v1 reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # ipdb.set_trace() loss_v = loss_o + tf.add_n(reg_loss) tf.scalar_summary('loss', loss_v) # loss_merge = tf.cond( # is_val, lambda: tf.scalar_summary('val_loss_batch', loss_v), # lambda: tf.scalar_summary('loss', loss_v)) return loss_v, loss_o # return tf.reduce_mean(tf.nn.l2_loss(inf_targets - targets))
def transform(audio_data, save_image_path, nFFT=256, overlap=0.75): '''audio_data: signals to convert save_image_path: path to store the image file''' # spectrogram freq_data = stft(audio_data, nFFT, overlap) freq_data = np.maximum(np.abs(freq_data), np.max(np.abs(freq_data)) / 10000) log_freq_data = 20. * np.log10(freq_data / 1e-4) N_samples = log_freq_data.shape[0] # log_freq_data = np.maximum(log_freq_data, max_m - 70) # print(np.max(np.max(log_freq_data))) # print(np.min(np.min(log_freq_data))) log_freq_data = np.round(log_freq_data) log_freq_data = np.transpose(log_freq_data) # ipdb.set_trace() assert np.max(np.max(log_freq_data)) < 256, 'spectrogram value too large' # save the image spec_imag = Image.fromarray(log_freq_data) spec_imag = spec_imag.convert('RGB') spec_imag.save(save_image_path) return N_samples
def print_stats(dataset, top=5): """ Displays top values by order """ sum = numpy.sum(list(dataset.values())) i = 0 if sum: sorted_keys = sorted(dataset, key=dataset.get, reverse=True) max_len_key = max([len(x) for x in sorted_keys][:top]) # use to adjust column width for k in sorted_keys: try: print(("- \033[1m{:<%d}\033[0m {:>6} {:<4}" % max_len_key) .format(k, dataset[k], "(%d%%)" % ((float(dataset[k]) / sum) * 100))) except: import ipdb ipdb.set_trace() i += 1 if i >= top: break else: print("No data") print("")
def extract(self, data_path, session, saver): saver.restore(session, data_path) scopes = ['conv1_1','conv1_2','conv2_1','conv2_2','conv3_1','conv3_2','conv3_3','conv4_1','conv4_2','conv4_3','conv5_1','conv5_2','conv5_3','rpn_conv/3x3','rpn_cls_score','rpn_bbox_pred','fc6','fc7','cls_score','bbox_pred'] data_dict = {} for scope in scopes: # Freezed layers if scope in ['conv1_1','conv1_2','conv2_1','conv2_2']: [w, b] = tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope) # We don't need momentum variables else: [w, b] = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope) data_dict[scope] = {'weights':w.eval(), 'biases':b.eval()} file_name = data_path[0:-5] np.save(file_name, data_dict) ipdb.set_trace() return file_name + '.npy'
def forward_gpu(self, inputs): cupy = cuda.cupy x, t = inputs log_y = cupy.log(x + 1e-5) self.y = x if(self.debug): ipdb.set_trace() if getattr(self, 'normalize', True): coeff = cupy.maximum(1, (t != self.ignore_label).sum()) else: coeff = max(1, len(t)) self._coeff = cupy.divide(1.0, coeff, dtype=x.dtype) log_y = cupy.rollaxis(log_y, 1, log_y.ndim) ret = cuda.reduce( 'S t, raw T log_y, int32 n_channel, raw T coeff', 'T out', 't == -1 ? 0 : log_y[_j * n_channel + t]', 'a + b', 'out = a * -coeff[0]', '0', 'crossent_fwd' )(t, log_y.reduced_view(), log_y.shape[-1], self._coeff) return ret,
def forward_gpu(self, inputs): cupy = cuda.cupy x, t = inputs log_y = cupy.log(x + 1e-5) self.y = x if(self.debug): ipdb.set_trace() if getattr(self, 'normalize', True): coeff = cupy.maximum(1, (t != self.ignore_label).sum()) else: coeff = max(1, len(t)) self._coeff = cupy.divide(1.0, coeff, dtype=x.dtype) log_y = cupy.rollaxis(log_y, 1, log_y.ndim) ret = cuda.reduce( 'S t, raw T log_y, int32 n_channel, raw T coeff, raw T weights', 'T out', 't == -1 ? 0 : log_y[_j * n_channel + t] * weights[t]', 'a + b', 'out = a * -coeff[0]', '0', 'crossent_fwd' )(t, log_y.reduced_view(), log_y.shape[-1], self._coeff, self.weights.reduced_view()) return ret,
def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True): probs = [] n_done = 0 for x in iterator: n_done += len(x) x, x_mask = prepare_data(x, n_words=options['n_words']) pprobs = f_log_probs(x, x_mask) for pp in pprobs: probs.append(pp) if numpy.isnan(numpy.mean(probs)): ipdb.set_trace() if verbose: print >>sys.stderr, '%d samples computed' % (n_done) return numpy.array(probs)
def __init__(self, insname, *args, execute=True, read_status=False, loop=0, delay=0, **kwargs): super(RunInstruction, self).__init__(*args, **kwargs) self.isBH = False if (self.data or self.read) and not self.bitcount: desc = self.dev._desc regname = desc._instruction_register_map.get(insname) self.bitcount = desc._registers.get(regname) if self.bitcount is None: #print("Dealing with a Blackhole Register") self.isBH = True self.bitcount = len(self.data) if not self.data and self.bitcount: self.data = NoCareBitarray(self.bitcount) if self.data is not None and len(self.data) != self.bitcount: import ipdb ipdb.set_trace() raise ValueError("") self.read_status = read_status self.insname = insname self.execute = execute self.delay = delay self.loop = loop
def index(): global curr_time global syspass if request.method == 'GET': return render_template('index.html') elif request.method == 'POST': # ipdb.set_trace() enroll = request.form['enroll'] passwd = request.form['pass'] syspass = request.form['syspass'] name = request.form['name'] session['name'] = name a = soldier.run('sudo mount -t cifs //fileserver2/' + enroll + ' /mnt -o user='+enroll+',password='+passwd+',workgroup=workgroup,ip=172.16.68.30', sudo=syspass) # a = soldier.run() if os.path.isfile('/mnt/chat.txt') == False: a = soldier.run('sudo touch /mnt/chat.txt', sudo=syspass) curr_time = time.time() session['user']=1 # print session['curr'] return redirect('/chat')
def pred_probs(self, stream, f_log_probs, prepare_data, verbose=True): options = self.options probs = [] n_done = 0 for x in stream: n_done += len(x) x, x_mask = prepare_data(x, n_words=options['n_words']) pprobs = f_log_probs(x, x_mask) for pp in pprobs: probs.append(pp) if numpy.isnan(numpy.mean(probs)): ipdb.set_trace() if verbose: print >>sys.stderr, '%d samples computed' % (n_done) return numpy.array(probs)
def __init__(self, data_dir, batch_size): '''preprocess the training data data_dir: dir containing the training data format:root_dir + speaker_dir + wavfiles''' # get dirs for each speaker self.speakers_dir = [os.path.join(data_dir, i) for i in os.listdir(data_dir)] self.n_speaker = len(self.speakers_dir) self.batch_size = batch_size self.speaker_file = {} self.epoch = 0 # get the files in each speakers dir for i in range(self.n_speaker): wav_dir_i = [os.path.join(self.speakers_dir[i], file) for file in os.listdir(self.speakers_dir[i])] for j in wav_dir_i: if i not in self.speaker_file: self.speaker_file[i] = [] self.speaker_file[i].append(j) # ipdb.set_trace() # self.reinit()
def inspect_weight_dist(prefix_net, epoch): # sym, arg_params, aux_params = mx.model.load_checkpoint(prefix_net, epoch) quantize_bit = 5 err_log = {} err_uni = {} err_diff = [] for k in sorted(arg_params): if not k.endswith('_weight'): continue v = arg_params[k].asnumpy().ravel() err_log[k] = measure_log_quantize_error(v, quantize_bit) err_uni[k] = measure_uni_quantize_error(v, quantize_bit) err_diff.append(err_log[k] - err_uni[k]) plt.plot(range(len(err_diff)), err_diff) import ipdb ipdb.set_trace()
def generate_batch(im): """ preprocess image, return batch :param im: cv2.imread returns [height, width, channel] in BGR :return: data_batch: MXNet input batch data_names: names in data_batch im_scale: float number """ import ipdb ipdb.set_trace() im_array, im_scale = resize(im, SHORT_SIDE, LONG_SIDE, stride=config.IMAGE_STRIDE) im_array = transform(im_array, PIXEL_MEANS) im_info = np.array([[im_array.shape[2], im_array.shape[3], im_scale]], dtype=np.float32) data = [mx.nd.array(im_array), mx.nd.array(im_info)] data_shapes = [('data', im_array.shape), ('im_info', im_info.shape)] data_batch = mx.io.DataBatch(data=data, label=None, provide_data=data_shapes, provide_label=None) return data_batch, DATA_NAMES, im_scale
def __call__(self, inp=None): """Apply preptrain to input `inp`.""" # Parse inp = (self.x if inp is None else inp) # Instantiate an interloop container itc = inp # Loop for coach in self.train: try: itc = coach(itc) except Exception as e: if self._debug: print("Exception raised, entering debugger. Hit 'q' followed by 'return' to exit.") import ipdb ipdb.set_trace() else: raise e # Assign and return self.y = itc return self.y
def pred_probs(f_log_probs, options, iterator, verbose=True): probs = [] n_done = 0 for x, y in iterator: n_done += len(x) pprobs = f_log_probs(x) for pp in pprobs: probs.append(pp) if numpy.isnan(numpy.mean(probs)): ipdb.set_trace() if verbose: print >>sys.stderr, '%d samples computed' % (n_done) return numpy.array(probs)
def forward(self, x): # mini = list(self.features.children())[:4] # mini_f = torch.nn.modules.Sequential(*mini) ; # y = mini_f(x) # ipdb.set_trace() # mini = list(self.features.children()) x = self.features(x) if self.flatten_loc == 'classifier': x = x.view(x.size(0), -1) x = self.classifier(x) elif self.flatten_loc == 'end': x = self.classifier(x) x = x.view(x.size(0), -1) else: msg = 'unrecognised flatten_loc: {}'.format(self.flatten_loc) raise ValueError(msg) return x
def get_original_size(mask, max_size=(640,640)): row = None col = None for i in range(max_size[0]-1, -1, -1): if mask[i,0,0] == 1: row = i + 1 break for i in range(max_size[1]-1, -1, -1): if mask[0,i,0] == 1: col = i + 1 break if row is None or col is None: ipdb.set_trace() return row, col
def do(self, callback_name, *args): probs = {} print '' logger.info(" Computing log-probs...") start = time.time() for cg_name, stream in self.streams.iteritems(): probs[cg_name] = list() src_id, trg_id = p_(cg_name) # handle multi-source stream src_idx = self.enc_ids.index(src_id) trg_idx = self.dec_ids.index(trg_id) for i, batch in enumerate(stream.get_epoch_iterator()): batch_size = batch[0].shape[0] src_sel = numpy.zeros( (batch_size, self.num_encs)).astype(theano.config.floatX) src_sel[:, src_idx] = 1. trg_sel = numpy.zeros( (batch_size, self.num_decs)).astype(theano.config.floatX) trg_sel[:, trg_idx] = 1. inps = [batch[0].T, batch[1].T, batch[2].T, batch[3].T, src_sel, trg_sel] pprobs = self.f_log_probs[cg_name](*inps) probs[cg_name].append(pprobs.tolist()) if numpy.isnan(numpy.mean(probs[cg_name])): import ipdb ipdb.set_trace() print 'logprob for CG [{}]: {}'.format( cg_name, numpy.mean(probs[cg_name])) print "took {} seconds.".format(time.time()-start) records = [('logprob_' + k, numpy.mean(v)) for k, v in probs.iteritems()] self.add_records(self.main_loop.log, records)
def __call__(self, inputs, state, scope=None): """Long short-term memory cell (LSTM).""" with tf.variable_scope(scope or type(self).__name__): c, h = state # change bias argument to False since LN will add bias via shift concat = tf.nn.rnn_cell._linear( [inputs, h], 4 * self._num_units, False) # ipdb.set_trace() i, j, f, o = tf.split(1, 4, concat) # add layer normalization to each gate i = ln(i, scope='i/') j = ln(j, scope='j/') f = ln(f, scope='f/') o = ln(o, scope='o/') new_c = (c * tf.nn.sigmoid(f + self._forget_bias) + tf.nn.sigmoid(i) * self._activation(j)) # add layer_normalization in calculation of new hidden state new_h = self._activation( ln(new_c, scope='new_h/')) * tf.nn.sigmoid(o) new_state = tf.nn.rnn_cell.LSTMStateTuple(new_c, new_h) return new_h, new_state
def inference(self, images, is_train): '''Net configuration as the original paper''' image_input = tf.reshape(images, [-1, self.N_IN, self.NEFF, 1]) # ipdb.set_trace() with tf.variable_scope('con1') as scope: h_conv1 = self._conv_layer_wrapper(image_input, 12, 13, is_train) with tf.variable_scope('con2') as scope: h_conv2 = self._conv_layer_wrapper(h_conv1, 16, 11, is_train) with tf.variable_scope('con3') as scope: h_conv3 = self._conv_layer_wrapper(h_conv2, 20, 9, is_train) with tf.variable_scope('con4') as scope: h_conv4 = self._conv_layer_wrapper(h_conv3, 24, 7, is_train) with tf.variable_scope('con5') as scope: h_conv5 = self._conv_layer_wrapper(h_conv4, 32, 7, is_train) with tf.variable_scope('con6') as scope: h_conv6 = self._conv_layer_wrapper(h_conv5, 24, 7, is_train) with tf.variable_scope('con7') as scope: h_conv7 = self._conv_layer_wrapper(h_conv6, 20, 9, is_train) with tf.variable_scope('con8') as scope: h_conv8 = self._conv_layer_wrapper(h_conv7, 16, 11, is_train) with tf.variable_scope('con9') as scope: h_conv9 = self._conv_layer_wrapper(h_conv8, 12, 13, is_train) with tf.variable_scope('con10') as scope: f_w = h_conv9.get_shape()[1].value i_fm = h_conv9.get_shape()[-1].value W_con10 = weight_variable( [f_w, 129, i_fm, 1]) b_conv10 = bias_variable([1]) h_conv10 = conv2d(h_conv9, W_con10) + b_conv10 return tf.reshape(h_conv10, [-1, self.NEFF])
def __init__(self, audio_dir, noise_dir, coord, N_IN, frame_length, frame_move, is_val): '''coord: tensorflow coordinator N_IN: number of input frames presented to DNN frame_move: hopsize''' self.audio_dir = audio_dir self.noise_dir = noise_dir self.coord = coord self.N_IN = N_IN self.frame_length = frame_length self.frame_move = frame_move self.is_val = is_val self.sample_placeholder_many = tf.placeholder( tf.float32, shape=(None, self.N_IN, 2, frame_length)) # queues to store the data if not is_val: self.q = tf.RandomShuffleQueue( 200000, 5000, tf.float32, shapes=(self.N_IN, 2, frame_length)) else: self.q = tf.FIFOQueue( 200000, tf.float32, shapes=(self.N_IN, 2, frame_length)) self.enqueue_many = self.q.enqueue_many( self.sample_placeholder_many + 0) self.audiofiles = find_files(audio_dir) self.noisefiles = find_files(noise_dir) print('%d speech found' % len(self.audiofiles)) print('%d noise found' % len(self.noisefiles)) # ipdb.set_trace()
def main_loop(self): logger.debug("In main loop") while True: sleeptime = 0.1 if self.options.debug: import ipdb ipdb.set_trace() try: logdata = self.log.q.get(False) self.parse_logdata(logdata) sleeptime = 0.1 except Empty: sleeptime = 0.5 except: logger.exception("Something went wrong handling some log data") try: chatdata = self.log.chat.get(False) self.parse_chatdata(chatdata) sleeptime = 0.1 except Empty: if sleeptime != 0.1: sleeptime = 0.5 except: logger.exception("Something went wrong handling some chat data") try: wsdata = self.ws.from_server.get(False) self.parse_wsdata(wsdata) sleeptime = 0.1 except Empty: if sleeptime != 0.1: sleeptime = 0.5 except: logger.exception("Something went wrong handling some ws data") sleep(sleeptime)
def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True, normalize=False, alignweights=False): probs = [] n_done = 0 alignments_json = [] for x, y in iterator: n_done += len(x) x, x_mask, y, y_mask = prepare_data(x, y, n_words_src=options['n_words_src'], n_words=options['n_words']) ### in optional save weights mode. if alignweights: pprobs, attention = f_log_probs(x, x_mask, y, y_mask) for jdata in get_alignments(attention, x_mask, y_mask): alignments_json.append(jdata) else: pprobs = f_log_probs(x, x_mask, y, y_mask) # normalize scores according to output length if normalize: lengths = numpy.array([numpy.count_nonzero(s) for s in y_mask.T]) pprobs /= lengths for pp in pprobs: probs.append(pp) if numpy.isnan(numpy.mean(probs)): ipdb.set_trace() if verbose: print >>sys.stderr, '%d samples computed' % (n_done) return numpy.array(probs), alignments_json # optimizers # name(hyperp, tparams, grads, inputs (list), cost) = f_grad_shared, f_update
def parse_date(txt): if not txt: return None try: return datetime.strptime(txt, '%Y-%m-%d %H:%M:%S') except ValueError: ipdb.set_trace()
def guess_date(ftp_url): import re m = re.search(r'_\d{6,8}', ftp_url.split('/')[-1]) if not m: return None m = m.group(0).strip('_') if len(m)==6: return datetime.strptime(m,'%y%m%d') elif len(m)==8: return datetime.strptime(m,'%Y%m%d') else: ipdb.set_trace()
def search_phrase(text): print() print() print("Searching for: '%s'" % text) res = solr.search(text) print("Search results object ", res) print("The number of results: %d " % len(res.docs)) print("The best result ", res.docs[0]) import ipdb ipdb.set_trace() # Exact phrase
def debugger(): """If called in the context of an exception, calls post_mortem; otherwise set_trace. ``ipdb`` is preferred over ``pdb`` if installed. """ e, m, tb = sys.exc_info() if tb is not None: _debugger.post_mortem(tb) else: _debugger.set_trace()
def plot_for_truck(k): global depot, customers n = len(customers) x = [element.x for element in customers[1:]] y = [element.y for element in customers[1:]] plt.scatter(x, y) plt.scatter(depot.x, depot.y, c="r") truck = trucks[k] x2 = [] y2 = [] x2.append( depot.x ) y2.append( depot.y ) cs = truck.ordered_customers for c in cs: x2.append( c.x ) y2.append( c.y ) x2.append( depot.x ) y2.append( depot.y ) colors = ["b","g","r","c","m","k"] ipdb.set_trace() plt.plot(x2, y2, c=colors[k], linewidth=3) # plt.show()
def getBatch_(self, indices): # format NxCHxWxH batchRGB = np.zeros((len(indices), self.CH, self.W, self.H), dtype='float32') batchLabel = np.zeros((len(indices), self.W, self.H), dtype='int32') k = 0 for i in indices: (rgbname, gtname) = self.flist[i] # format: HxWxCH rgb = misc.imread(rgbname) if(gtname.endswith('.png')): gt = misc.imread(gtname) else: gt = np.loadtxt(gtname) gt = gt.astype('uint8') if(self.data_transformer is not None): rgb = self.data_transformer.transformData(rgb) gt = self.data_transformer.transformLabel(gt) #^ data_transformer outputs in format HxWxCH # convertion from HxWxCH to CHxWxH batchRGB[k,:,:,:] = rgb.astype(np.float32).transpose((2,1,0)) batchLabel[k,:,:] = gt.astype(np.int32).transpose((1,0)) k += 1 #ipdb.set_trace() if(self.weights_classes_flag): return (batchRGB, batchLabel, self.weights_classes) else: return (batchRGB, batchLabel)
def saveInfo(self, model, optimizer, smanager, epoch, outputFolder, saveEach): #ipdb.set_trace() if(epoch % saveEach == 0): if(not os.path.exists(outputFolder)): os.makedirs(outputFolder) bname = outputFolder + '/' + model.getName() + '_' + str(epoch) serializers.save_npz(bname + '.model', model) serializers.save_npz(bname + '.state', optimizer) smanager.save(bname + '.stats')
def __call__(self, input_blob, test_mode=False): # explicit and very flexible DAG! ################################# data = input_blob[0] labels = input_blob[1] if(len(input_blob) >= 3): weights_classes = input_blob[2] else: weights_classes = chainer.Variable(cuda.cupy.ones((self.classes, 1), dtype='float32')) # ---- CONTRACTION BLOCKS ---- # blob_b0 = self.bnorm0(data) (blob_b1, indices_b1, size_b1) = F.max_pooling_2dIndices(self.bnorm1(F.relu(self.conv1(blob_b0)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0)) (blob_b2, indices_b2, size_b2) = F.max_pooling_2dIndices(self.bnorm2(F.relu(self.conv2(blob_b1)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0)) (blob_b3, indices_b3, size_b3) = F.max_pooling_2dIndices(self.bnorm3(F.relu(self.conv3(blob_b2)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0)) (blob_b4, indices_b4, size_b4) = F.max_pooling_2dIndices(self.bnorm4(F.relu(self.conv4(blob_b3)), test=test_mode), (2, 2), stride=(2,2), pad=(0, 0)) # ---- EXPANSION BLOCKS ---- # blob_b5 = self.bnorm5(F.relu(self.conv5(F.unpooling_2d(blob_b4, indices_b4, size_b4))), test=test_mode) blob_b6 = self.bnorm6(F.relu(self.conv6(F.unpooling_2d(blob_b5, indices_b3, size_b3))), test=test_mode) blob_b7 = self.bnorm7(F.relu(self.conv7(F.unpooling_2d(blob_b6, indices_b2, size_b2))), test=test_mode) blob_b8 = self.bnorm8(F.relu(self.conv8(F.unpooling_2d(blob_b7, indices_b1, size_b1))), test=test_mode) #ipdb.set_trace() # ---- SOFTMAX CLASSIFIER ---- # self.blob_class = self.classi(blob_b8) self.probs = F.softmax(self.blob_class) # ---- CROSS-ENTROPY LOSS ---- # #ipdb.set_trace() self.loss = F.weighted_cross_entropy(self.probs, labels, weights_classes, normalize=True) self.output_point = self.probs return self.loss
def get_rescaled_value_from_model(model, data): try: predicted_value = get_data_from_model(model, data) except: ipdb.set_trace(); return (predicted_value - data.mean())/data.std()
def __init__(self, assets, look_back, episode_length, look_back_reinforcement, price_series, train): # think about it whether its needed or not self.action_repeat = 2 self.gym_actions = range(len(assets) + 1) self.look_back = look_back total_data = pd.read_csv("../data/all_data.csv") cut_index = int(total_data.shape[0] * 0.8) if train: data = total_data[0:cut_index] else: data = total_data[cut_index:-1] self.look_back = look_back self.assets_index = range(0, (len(self.gym_actions)) * 4, 4)[1:] self.look_ahead = 1 self.batch_size = 50 self.look_back_reinforcement = look_back_reinforcement self.total_data = pandas_split_series_into_list(data, self.look_back + episode_length + 1) # ipdb.set_trace(); # self.numpy_data = self.data.as_matrix() self.price_series = price_series self.episode_length = episode_length self.models = make_asset_input(assets, look_back, self.look_ahead, self.batch_size) # self.models = [0,1] self.assets = assets
def sum_nums(n): s=0 for i in range(n): ipdb.set_trace() s += i print(s)
def test_filter_on_flag_column_nothing_left(): bad_df = pd.DataFrame({'spkitemid': ['a1', 'b1', 'c1', 'd1'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [1, 0, 20, 14], 'flag2': [1, 1.0, 'TD', '03']}) flag_dict = {'flag1': [1, 0, 14], 'flag2': ['TD']} df_new, df_excluded = filter_on_flag_columns(bad_df, flag_dict) import ipdb ipdb.set_trace()
def poll(): # global curr_time # ipdb.set_trace() global curr_time # curr = session['curr'] while os.path.isfile('/mnt/lock'): pass a = soldier.run('sudo touch /mnt/lock', sudo=syspass) resp = [] f = open('/mnt/chat.txt', 'r') lines = f.readlines() print lines for line in lines: tm = line.split("$$$")[0] print str(curr_time) + " $$$ " + str(tm) print int(tm) > int(curr_time) if int(tm) > int(curr_time): tt = datetime.datetime.fromtimestamp(int(tm)/1000).strftime('%Y-%m-%d %H:%M:%S') try: resp.append(tt + ' : ' + line.split("$$$")[1] + ' : ' + line.split("$$$")[2] ) curr_time = int(tm) except: pass try: curr_time = int(tm) except: pass f.close() a = soldier.run('sudo rm /mnt/lock', sudo=syspass) # session['curr'] = curr return resp # return 'hello'
def send(msg,tm): # ipdb.set_trace() curr = tm while os.path.isfile('/mnt/lock'): pass a = soldier.run('sudo touch /mnt/lock', sudo=syspass) resp = [] f = open('/mnt/chat.txt', 'a') f.write(str(curr) + '$$$' + str(session['name']) + '$$$' + msg + '\n') f.close() a = soldier.run('sudo rm /mnt/lock', sudo=syspass) return "success"
def params_compare(old_ps, new_ps): try: from itertools import zip_longest for (o, ov), (n, nv) in zip_longest(old_ps.items(), new_ps.items(), fillvalue=(None, None)): if o == n and ov == nv: continue param_compare(ov, nv) except: import ipdb ipdb.set_trace()
def ipdb_breakpoint(x): """A simple hook function for :func:`put_hook` that runs ipdb. Parameters ---------- x : :class:`~numpy.ndarray` The value of the hooked variable. """ import ipdb ipdb.set_trace()
def feature(aegan, filename): import ipdb with ipdb.launch_ipdb_on_exception(): aegan.load(prefix='./samples/reid_aegan/aegan/50') paths = map(lambda x: x.strip(), open('protocol/cuhk01-all.txt').readlines()) x = transform( np.array([load_image(path, (64, 128)) for path in paths]) ) code = aegan.autoencoder.encoder.predict(x) ipdb.set_trace()
def test(aegan, prefix): import ipdb with ipdb.launch_ipdb_on_exception(): aegan.load(prefix=prefix) from GAN.utils.vis import vis_grid vis_grid(inverse_transform(aegan.generator.random_generate(128)), (2, 20), 'random_generate.png') paths = map(lambda x: x.strip(), open('protocol/cuhk01-all.txt').readlines()) from load import load_image sample = transform( np.array([load_image(path, (64, 128)) for path in paths[:128]]) ) vis_grid(inverse_transform(sample), (2, 20), 'sample.png') vis_grid(inverse_transform(aegan.autoencoder.autoencoder.predict(sample)), (2, 20), 'reconstruct.png') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt # codes = aegan.autoencoder.encoder.predict(sample) # codes = aegan.generator.sample(128) codes = aegan.autoencoder.encoder.predict(aegan.generator.random_generate(128)) for ind, code in enumerate(codes): n, bins, patches = plt.hist(code, 50, normed=1, facecolor='green', alpha=0.75) plt.savefig('test/{}.pdf'.format(ind)) plt.clf() ipdb.set_trace()
def feature_aegan(aegan, modelname, protoname): with ipdb.launch_ipdb_on_exception(): aegan.load(prefix=modelname) x = transform(load_all(protoname, (npxw, npxh))) code = aegan.autoencoder.encoder.predict(x) ipdb.set_trace()
def apply(self, inputs, gate_inputs, mask=None): def step(inputs, gate_inputs, states, state_to_gates, state_to_state): #import ipdb #ipdb.set_trace() gate_values = self.gate_activation.apply( states.dot(self.state_to_gates) + gate_inputs) update_values = gate_values[:, :self.dim] reset_values = gate_values[:, self.dim:] states_reset = states * reset_values next_states = self.activation.apply( states_reset.dot(self.state_to_state) + inputs) next_states = (next_states * update_values + states * (1 - update_values)) return next_states def step_mask(inputs, gate_inputs, mask_input, states, state_to_gates, state_to_state): next_states = step(inputs, gate_inputs, states, state_to_gates, state_to_state) if mask_input: next_states = (mask_input[:, None] * next_states + (1 - mask_input[:, None]) * states) return next_states if mask: func = step_mask sequences = [inputs, gate_inputs, mask] else: func = step sequences = [inputs, gate_inputs] #[dict(input=inputs), dict(input=gate_inputs), dict(input=mask)] output = tensor.repeat(self.params[2].dimshuffle('x',0), inputs.shape[1], axis=0) states_output, _ = theano.scan(fn=func, sequences=sequences, outputs_info=[output], non_sequences=[self.state_to_gates, self.state_to_state], strict=True, #allow_gc=False) ) return states_output
def apply(self, inputs, update_inputs, reset_inputs, mask=None): def step(inputs, update_inputs, reset_inputs, states, state_to_update, state_to_reset, state_to_state): #import ipdb #ipdb.set_trace() reset_values = self.gate_activation.apply( states.dot(self.state_to_reset) + reset_inputs) update_values = self.gate_activation.apply( states.dot(self.state_to_update) + update_inputs) next_states_proposed = self.activation.apply( (states * reset_values).dot(self.state_to_state) + inputs) next_states = (next_states_proposed * update_values + states * (1 - update_values)) return next_states def step_mask(inputs, update_inputs, reset_inputs, mask_input, states, state_to_update, state_to_reset, state_to_state): next_states = step(inputs, updatE_inputs, reset_inputs, states, state_to_update, state_to_reset, state_to_state) if mask_input: next_states = (mask_input[:, None] * next_states + (1 - mask_input[:, None]) * states) return next_states if mask: func = step_mask sequences = [inputs, update_inputs, reset_inputs, mask] else: func = step sequences = [inputs, update_inputs, reset_inputs] #[dict(input=inputs), dict(input=gate_inputs), dict(input=mask)] #output = tensor.repeat(self.params[2].dimshuffle('x',0), inputs.shape[1], axis=0) states_output, _ = theano.scan(fn=func, sequences=sequences, outputs_info=[self.initial_state('initial_state', inputs.shape[1])], non_sequences=[self.state_to_reset, self.state_to_update, self.state_to_state], strict=True, allow_gc=False) return states_output
def get_or_create_module(self, fullname): """ Given a name and a path it will return a module instance if found. When the module could not be found it will raise ImportError """ LOGGER.info('Loading module {0}'.format(fullname)) parent, _, module_name = fullname.rpartition('.') if fullname in modules: LOGGER.info('Found cache entry for {0}'.format(fullname)) return modules[fullname] module = modules.setdefault(fullname, imp.new_module(fullname)) if len(fullname.strip('.')) > 3: absolute_from_root = fullname.split('.', 3)[-1] modules.setdefault(absolute_from_root, module) if len(fullname.split('.')) == 4: # add the root of the project modules[fullname.split('.')[-1]] = module # required by PEP 302 module.__file__ = self.get_filename(fullname) LOGGER.info('Created module {0} with fullname {1}'.format(self.get_filename(fullname), fullname)) module.__name__ = fullname module.__loader__ = self module.__path__ = self.path if self.is_package(fullname): module.__path__ = self.path module.__package__ = fullname else: module.__package__ = fullname.rpartition('.')[0] LOGGER.debug('loading file {0}'.format(self.get_filename(fullname))) source = self.get_source(fullname) try: exec(source, module.__dict__) except Exception as ex: ipdb.set_trace() return module
def sample(self, dist_info): samples = self._f_sample(dist_info["prob"]) import ipdb ipdb.set_trace()