Python ipywidgets 模块,interact() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用ipywidgets.interact()

项目:postlearn    作者:TomAugspurger    | 项目源码 | 文件源码
def plot_grid_scores(self, x, hue=None, row=None, col=None, col_wrap=None,
                         **kwargs):
        def none_if_none(x):
            return None if x == 'None' else x

        if has_widgets:
            choices = ['None'] + list(unpack_grid_scores(self.model)
                                      .columns.drop(['mean_', 'std_']))

            @interact(x=choices, hue=choices, row=choices, col=choices)
            def wrapper(x=x, hue=None, row=None, col=None):
                return plot_grid_scores(self.model,
                                        none_if_none(x),
                                        'mean_',
                                        hue=none_if_none(hue),
                                        row=none_if_none(row),
                                        col=none_if_none(col),
                                        col_wrap=none_if_none(col_wrap),
                                        **kwargs)
            return wrapper
        else:
            return plot_grid_scores(self.model, x, 'mean_', hue=hue, row=row,
                                    col=col, col_wrap=col_wrap, **kwargs)
项目:fygimbal    作者:scanlime    | 项目源码 | 文件源码
def __init__(self, loopFunc, **kw):
        self.thread = None
        self.loopFunc = loopFunc
        ipywidgets.interact(self.toggler, x=ipywidgets.ToggleButton(**kw))
项目:fygimbal    作者:scanlime    | 项目源码 | 文件源码
def __init__(self, gimbal):
        self.gimbal = gimbal
        ipywidgets.interact(self.fn, x=ipywidgets.ToggleButton(description='Motor Enable'))
项目:fygimbal    作者:scanlime    | 项目源码 | 文件源码
def __init__(self, gimbal, number, axes=range(3), min=-0x8000, max=0x7fff, step=1):
        self.gimbal = gimbal
        self.number = number
        self.axes = axes
        self.widgets = [None] * 3

        ThreadToggle(self._update, description='Refresh param %02x' % number)

        for t in self.axes:
            v = self.gimbal.getParam(number=number, target=t)
            self.widgets[t] = ipywidgets.IntSlider(description='Param %02x t=%d' % (self.number, t),
                value=v, min=min, max=max, step=step,layout=dict(width='100%'))
            ipywidgets.interact(self._set, x=self.widgets[t], target=ipywidgets.fixed(t))
项目:fygimbal    作者:scanlime    | 项目源码 | 文件源码
def __init__(self, gimbal):
        self.gimbal = gimbal
        self.controlPacket = None

        xw = ipywidgets.IntSlider(value=0, min=-0x8000, max=0x7fff, step=1, layout=dict(width='100%'))
        yw = ipywidgets.IntSlider(value=0, min=-0x8000, max=0x7fff, step=1, layout=dict(width='100%'))
        zw = ipywidgets.IntSlider(value=0, min=-0x8000, max=0x7fff, step=1, layout=dict(width='100%'))
        mw = ipywidgets.IntSlider(value=1, min=0, max=255, step=1, layout=dict(width='100%'))
        ipywidgets.interact(self.setFn, x=xw, y=yw, z=zw, m=mw)

        ThreadToggle(self.loopFn, description='Controller thread')

        self.rate = ipywidgets.IntSlider(description='Update rate',
            value=25, min=1, max=400, step=1, layout=dict(width='100%'))
        display(self.rate)
项目:unblackboxing_webinar    作者:deepsense-ai    | 项目源码 | 文件源码
def type_and_vis(self):
        def input_box(tweet, grads, activations, over_words, over_units):
            self.vis_activation([tweet], grads, activations, over_words, over_units)
        return interact(input_box, tweet='This is a great tool', grads=False, activations=True, 
                        over_words=True, over_units=False)
项目:unblackboxing_webinar    作者:deepsense-ai    | 项目源码 | 文件源码
def plot(self, vis_func, img_path, label_list, figsize):
        img = utils.load_img(img_path, target_size=self.img_shape_)
        img = img[:,:,:3]

        predictions = self.model_.predict(img2tensor(img, self.img_shape_))
        predictions = softmax(predictions)

        if not label_list:
            prediction_text = decode_predictions(predictions)[0]
            def _plot(label_id):
                label_id = int(label_id)
                text_label = get_pred_text_label(label_id)
                label_proba = np.round(predictions[0,label_id], 4)
                heatmap = vis_func(img, label_id)
                for p in prediction_text:
                    print(p[1:]) 

                plt.figure(figsize=figsize)
                plt.subplot(1,2,1)
                plt.title('label:%s\nscore:%s'%(text_label,label_proba))
                plt.imshow(overlay(heatmap, img))
                plt.subplot(1,2,2)
                plt.imshow(img)
                plt.show()
        else:
            def _plot(label_id):
                print(pd.DataFrame(predictions, columns=label_list))
                label_id = int(label_id)
                text_label = label_list[label_id]
                label_proba = np.round(predictions[0,label_id], 4)
                heatmap = vis_func(img,label_id)

                plt.figure(figsize=figsize)
                plt.subplot(1,2,1)
                plt.title('label:%s\nscore:%s'%(text_label,label_proba))
                plt.imshow(overlay(heatmap, img))
                plt.subplot(1,2,2)
                plt.imshow(img)
                plt.show()       

        return interact(_plot, label_id='1')
项目:unblackboxing_webinar    作者:deepsense-ai    | 项目源码 | 文件源码
def browse(self, figsize=(16,10), labels=None):        
        def plot(layer_id, filter_id):
            filepath = '{}/{}/{}/img.jpg'.format(self.save_dir_, 
                                                 layer_id, filter_id)            
            img = plt.imread(filepath)
            plt.figure(figsize=figsize)
            if labels:
                plt.title('Label: {}'.format(labels[int(filter_id)]))
            plt.imshow(img)
            plt.show()
        return interact(plot, layer_id='1',filter_id='0')
项目:unblackboxing_webinar    作者:deepsense-ai    | 项目源码 | 文件源码
def browse_layer(self, batch_size=25, cols=5):
        def plot(layer_id, batch_id):
            plt.figure(figsize=(14,20))
            all_files = sorted(os.listdir('{}/{}'.format(self.save_dir_, layer_id)))

            batch_id = int(batch_id)
            img_list, label_list = [],[]
            for f in all_files[batch_id*batch_size:(batch_id+1)*batch_size]:
                img_path = os.path.join(self.save_dir_, layer_id, f, 'img.jpg')
                img = plt.imread(img_path)
                img_list.append(img)
                label_list.append(f)
            plot_list(img_list, label_list, cols_nr=cols)
        return interact(plot, layer_id='17',batch_id='6')