Python keras.constraints 模块,unitnorm() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用keras.constraints.unitnorm()

项目:knowledge-graph-keras    作者:eshijia    | 项目源码 | 文件源码
def build(self):
        subject = self.subject
        relation = self.relation
        object_ = self.get_object()
        embedding_size = self.model_params.get('n_embed_dims', 100)

        # add embedding layers
        embedding_rel = Embedding(input_dim=self.config['n_words'],
                                  output_dim=self.model_params.get('n_embed_dims', 100),
                                  init='he_uniform',
                                  mask_zero=False)
        embedding_ent = Embedding(input_dim=self.config['n_words'],
                                  output_dim=self.model_params.get('n_embed_dims', 100),
                                  init='he_uniform',
                                  W_constraint=unitnorm(axis=1),
                                  mask_zero=False)
        subject_embedding = embedding_ent(subject)
        relation_embedding = embedding_rel(relation)
        object_embedding = embedding_ent(object_)

        subject_output = Reshape((embedding_size,))(subject_embedding)
        relation_output = Reshape((embedding_size,))(relation_embedding)
        object_output = Reshape((embedding_size,))(object_embedding)

        return subject_output, relation_output, object_output
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_unitnorm():
    unitnorm_instance = constraints.unitnorm()
    normalized = unitnorm_instance(K.variable(example_array))
    norm_of_normalized = np.sqrt(np.sum(K.eval(normalized)**2, axis=0))
    # in the unit norm constraint, it should be equal to 1.
    difference = norm_of_normalized - 1.
    largest_difference = np.max(np.abs(difference))
    assert(np.abs(largest_difference) < 10e-5)
项目:keras-recommendation    作者:sonyisme    | 项目源码 | 文件源码
def test_unitnorm(self):
        from keras.constraints import unitnorm
        unitnorm_instance = unitnorm()

        normalized = unitnorm_instance(self.example_array)

        norm_of_normalized = np.sqrt(np.sum(normalized.eval()**2, axis=1))
        difference = norm_of_normalized - 1. #in the unit norm constraint, it should be equal to 1.
        largest_difference = np.max(np.abs(difference))
        self.assertAlmostEqual(largest_difference, 0.)
项目:keras-recommendation    作者:sonyisme    | 项目源码 | 文件源码
def test_unitnorm_constraint(self):
        lookup = Sequential()
        lookup.add(Embedding(3, 2, weights=[self.W1], W_constraint=unitnorm()))
        lookup.add(Flatten())
        lookup.add(Dense(2, 1))
        lookup.add(Activation('sigmoid'))
        lookup.compile(loss='binary_crossentropy', optimizer='sgd', class_mode='binary')
        lookup.train(self.X1, np.array([[1], [0]], dtype='int32'))
        norm = np.linalg.norm(lookup.params[0].get_value(), axis=1)
        self.assertTrue(np.allclose(norm, np.ones_like(norm).astype('float32')))
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_unitnorm():
    unitnorm_instance = constraints.unitnorm()
    normalized = unitnorm_instance(K.variable(example_array))
    norm_of_normalized = np.sqrt(np.sum(K.eval(normalized)**2, axis=0))
    # in the unit norm constraint, it should be equal to 1.
    difference = norm_of_normalized - 1.
    largest_difference = np.max(np.abs(difference))
    assert(np.abs(largest_difference) < 10e-5)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_unitnorm():
    unitnorm_instance = constraints.unitnorm()
    normalized = unitnorm_instance(K.variable(example_array))
    norm_of_normalized = np.sqrt(np.sum(K.eval(normalized)**2, axis=0))
    # in the unit norm constraint, it should be equal to 1.
    difference = norm_of_normalized - 1.
    largest_difference = np.max(np.abs(difference))
    assert(np.abs(largest_difference) < 10e-5)
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def test_unitnorm(self):
        from keras.constraints import unitnorm
        unitnorm_instance = unitnorm()

        normalized = unitnorm_instance(self.example_array)

        norm_of_normalized = np.sqrt(np.sum(normalized.eval()**2, axis=1))
        difference = norm_of_normalized - 1.  # in the unit norm constraint, it should be equal to 1.
        largest_difference = np.max(np.abs(difference))
        self.assertAlmostEqual(largest_difference, 0.)
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def test_unitnorm_constraint(self):
        lookup = Sequential()
        lookup.add(Embedding(3, 2, weights=[self.W1], W_constraint=unitnorm(), input_length=1))
        lookup.add(Flatten())
        lookup.add(Dense(1))
        lookup.add(Activation('sigmoid'))
        lookup.compile(loss='binary_crossentropy', optimizer='sgd', class_mode='binary')
        lookup.train_on_batch(self.X1, np.array([[1], [0]], dtype='int32'))
        norm = np.linalg.norm(lookup.params[0].get_value(), axis=1)
        self.assertTrue(np.allclose(norm, np.ones_like(norm).astype('float32')))
项目:RecommendationSystem    作者:TURuibo    | 项目源码 | 文件源码
def test_unitnorm(self):
        from keras.constraints import unitnorm
        unitnorm_instance = unitnorm()

        normalized = unitnorm_instance(self.example_array)

        norm_of_normalized = np.sqrt(np.sum(normalized.eval()**2, axis=1))
        difference = norm_of_normalized - 1. #in the unit norm constraint, it should be equal to 1.
        largest_difference = np.max(np.abs(difference))
        self.assertAlmostEqual(largest_difference, 0.)
项目:RecommendationSystem    作者:TURuibo    | 项目源码 | 文件源码
def test_unitnorm_constraint(self):
        lookup = Sequential()
        lookup.add(Embedding(3, 2, weights=[self.W1], W_constraint=unitnorm()))
        lookup.add(Flatten())
        lookup.add(Dense(2, 1))
        lookup.add(Activation('sigmoid'))
        lookup.compile(loss='binary_crossentropy', optimizer='sgd', class_mode='binary')
        lookup.train(self.X1, np.array([[1], [0]], dtype='int32'))
        norm = np.linalg.norm(lookup.params[0].get_value(), axis=1)
        self.assertTrue(np.allclose(norm, np.ones_like(norm).astype('float32')))