Python keras.datasets.mnist 模块,load_data() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用keras.datasets.mnist.load_data()

项目:loss-correction    作者:giorgiop    | 项目源码 | 文件源码
def get_data(self):

        (X_train, y_train), (X_test, y_test) = self.load_data()

        idx_perm = np.random.RandomState(101).permutation(X_train.shape[0])
        X_train, y_train = X_train[idx_perm], y_train[idx_perm]

        X_train = X_train.astype('float32')
        X_test = X_test.astype('float32')

        print('X_train shape:', X_train.shape)
        print(X_train.shape[0], 'train samples')
        print(X_test.shape[0], 'test samples')

        return X_train, X_test, y_train, y_test

    # custom losses for the CNN
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def load_data():
    print 'Loading data...'
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')

    X_train /= 255
    X_test /= 255

    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)

    X_train = np.reshape(X_train, (60000, 784))
    X_test = np.reshape(X_test, (10000, 784))

    print 'Data loaded.'
    return [X_train, X_test, y_train, y_test]
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def load_data():
    print 'Loading data...'
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')

    X_train /= 255
    X_test /= 255

    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)

    X_train = np.reshape(X_train, (60000, 1, 28,28))
    X_test = np.reshape(X_test, (10000, 1, 28,28))

    print 'Data loaded'
    return [X_train, X_test, y_train, y_test]
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_cifar():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (X_train, y_train), (X_test, y_test) = cifar10.load_data()
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('fine')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('coarse')
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def get_data():
    # the data, shuffled and split between tran and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)[:max_train_samples]
    X_test = X_test.reshape(10000, 784)[:max_test_samples]
    X_train = X_train.astype("float32") / 255
    X_test = X_test.astype("float32") / 255

    # convert class vectors to binary class matrices
    y_train = y_train[:max_train_samples]
    y_test = y_test[:max_test_samples]
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    test_ids = np.where(y_test == np.array(weighted_class))[0]

    return (X_train, Y_train), (X_test, Y_test), test_ids
项目:keras-contrib    作者:farizrahman4u    | 项目源码 | 文件源码
def get_data():
    # the data, shuffled and split between tran and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)[:max_train_samples]
    X_test = X_test.reshape(10000, 784)[:max_test_samples]
    X_train = X_train.astype('float32') / 255
    X_test = X_test.astype('float32') / 255

    # convert class vectors to binary class matrices
    y_train = y_train[:max_train_samples]
    y_test = y_test[:max_test_samples]
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    test_ids = np.where(y_test == np.array(weighted_class))[0]

    return (X_train, Y_train), (X_test, Y_test), test_ids
项目:dist_hyperas    作者:osh    | 项目源码 | 文件源码
def train_model(model):
    batch_size = 128
    nb_epoch = 2
    nb_classes = 10

    from keras.datasets import mnist
    from keras.utils import np_utils
    import time
    a = time.time()

    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)

    model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
    h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
          verbose=0, validation_data=(X_test, Y_test))

    (loss,acc) = model.evaluate(X_test, Y_test, verbose=0)
    return {'loss':loss, 'accuracy':acc, 'epoch':h.epoch, 'time':time.time()-a, 'loss_hist':h.history['loss'], 'vloss_hist':h.history['val_loss']}
项目:keras-visualize-activations    作者:philipperemy    | 项目源码 | 文件源码
def get_mnist_data():

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')

    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    return x_train, y_train, x_test, y_test
项目:gandlf    作者:codekansas    | 项目源码 | 文件源码
def get_mnist_data(binarize=False):
    """Puts the MNIST data in the right format."""

    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    if binarize:
        X_test = np.where(X_test >= 10, 1, -1)
        X_train = np.where(X_train >= 10, 1, -1)
    else:
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_test = (X_test.astype(np.float32) - 127.5) / 127.5

    X_train = np.expand_dims(X_train, axis=-1)
    X_test = np.expand_dims(X_test, axis=-1)

    y_train = np.eye(10)[y_train]
    y_test = np.eye(10)[y_test]

    return (X_train, y_train), (X_test, y_test)
项目:gandlf    作者:codekansas    | 项目源码 | 文件源码
def get_mnist_data(binarize=False):
    """Puts the MNIST data in the right format."""

    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    if binarize:
        X_test = np.where(X_test >= 10, 1, -1)
        X_train = np.where(X_train >= 10, 1, -1)
    else:
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_test = (X_test.astype(np.float32) - 127.5) / 127.5

    X_train = np.expand_dims(X_train, axis=-1)
    X_test = np.expand_dims(X_test, axis=-1)

    y_train = np.expand_dims(y_train, axis=-1)
    y_test = np.expand_dims(y_test, axis=-1)

    return (X_train, y_train), (X_test, y_test)
项目:hyperas    作者:maxpumperla    | 项目源码 | 文件源码
def data():
    '''
    Data providing function:

    This function is separated from model() so that hyperopt
    won't reload data for each evaluation run.
    '''
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')

    visualization_mnist(X_test)

    X_train /= 255
    X_test /= 255
    nb_classes = 10
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return X_train, Y_train, X_test, Y_test
项目:hyperas    作者:maxpumperla    | 项目源码 | 文件源码
def data():
    '''
    Data providing function:

    This function is separated from model() so that hyperopt
    won't reload data for each evaluation run.
    '''
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    nb_classes = 10
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return X_train, Y_train, X_test, Y_test
项目:hyperas    作者:maxpumperla    | 项目源码 | 文件源码
def data():
    '''
    Data providing function:

    This function is separated from model() so that hyperopt
    won't reload data for each evaluation run.
    '''
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    nb_classes = 10
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return X_train, Y_train, X_test, Y_test
项目:hyperas    作者:maxpumperla    | 项目源码 | 文件源码
def data():
    """
    Data providing function:

    This function is separated from model() so that hyperopt
    won't reload data for each evaluation run.
    """
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    nb_classes = 10
    y_train = np_utils.to_categorical(y_train, nb_classes)
    y_test = np_utils.to_categorical(y_test, nb_classes)
    return x_train, y_train, x_test, y_test
项目:tensorsne    作者:gokceneraslan    | 项目源码 | 文件源码
def get_mnist(n_train=5000, n_test=500, pca=True, d=50, dtype=np.float32):
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    n, row, col = X_train.shape
    channel = 1

    X_train = X_train.reshape(-1, channel * row * col)
    X_test = X_test.reshape(-1, channel * row * col)
    X_train = X_train.astype(dtype)
    X_test = X_test.astype(dtype)
    X_train /= 255
    X_test /= 255

    X_train = X_train[:n_train] - X_train[:n_train].mean(axis=0)
    X_test = X_test[:n_test] - X_test[:n_test].mean(axis=0)

    if pca:
        pcfit = PCA(n_components=d)

        X_train = pcfit.fit_transform(X_train)
        X_test = pcfit.transform(X_test)

    y_train = y_train[:n_train]
    y_test = y_test[:n_test]

    return X_train, y_train, X_test, y_test
项目:NetworkCompress    作者:luzai    | 项目源码 | 文件源码
def load_data(self, limit_data, type='cifar10'):
        if MyConfig.cache_data is None:
            if type == 'cifar10':
                (train_x, train_y), (test_x, test_y) = cifar10.load_data()
            elif type == 'mnist':
                (train_x, train_y), (test_x, test_y) = mnist.load_data()
            elif type == 'cifar100':
                (train_x, train_y), (test_x, test_y) = cifar100.load_data(label_mode='fine')
            elif type == 'svhn':
                (train_x, train_y), (test_x, test_y) = load_data_svhn()

            train_x, mean_img = self._preprocess_input(train_x, None)
            test_x, _ = self._preprocess_input(test_x, mean_img)

            train_y, test_y = map(self._preprocess_output, [train_y, test_y])

            res = {'train_x': train_x, 'train_y': train_y, 'test_x': test_x, 'test_y': test_y}

            for key, val in res.iteritems():
                res[key] = MyConfig._limit_data(val, limit_data)
            MyConfig.cache_data = res

        self.dataset = MyConfig.cache_data
项目:DEC-keras    作者:XifengGuo    | 项目源码 | 文件源码
def load_retures_keras():
    from keras.preprocessing.text import Tokenizer
    from keras.datasets import reuters
    max_words = 1000

    print('Loading data...')
    (x, y), (_, _) = reuters.load_data(num_words=max_words, test_split=0.)
    print(len(x), 'train sequences')

    num_classes = np.max(y) + 1
    print(num_classes, 'classes')

    print('Vectorizing sequence data...')
    tokenizer = Tokenizer(num_words=max_words)
    x = tokenizer.sequences_to_matrix(x, mode='binary')
    print('x_train shape:', x.shape)

    return x.astype(float), y
项目:DEC-keras    作者:XifengGuo    | 项目源码 | 文件源码
def load_imdb():
    from keras.preprocessing.text import Tokenizer
    from keras.datasets import imdb
    max_words = 1000

    print('Loading data...')
    (x1, y1), (x2, y2) = imdb.load_data(num_words=max_words)
    x = np.concatenate((x1, x2))
    y = np.concatenate((y1, y2))
    print(len(x), 'train sequences')

    num_classes = np.max(y) + 1
    print(num_classes, 'classes')

    print('Vectorizing sequence data...')
    tokenizer = Tokenizer(num_words=max_words)
    x = tokenizer.sequences_to_matrix(x, mode='binary')
    print('x_train shape:', x.shape)

    return x.astype(float), y
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def get_data():
    # the data, shuffled and split between tran and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)[:max_train_samples]
    X_test = X_test.reshape(10000, 784)[:max_test_samples]
    X_train = X_train.astype("float32") / 255
    X_test = X_test.astype("float32") / 255

    # convert class vectors to binary class matrices
    y_train = y_train[:max_train_samples]
    y_test = y_test[:max_test_samples]
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    test_ids = np.where(y_test == np.array(weighted_class))[0]

    return (X_train, Y_train), (X_test, Y_test), test_ids
项目:deep_learning    作者:Vict0rSch    | 项目源码 | 文件源码
def load_data():
    print 'Loading data...'
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')

    X_train /= 255
    X_test /= 255

    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)

    X_train = np.reshape(X_train, (60000, 784))
    X_test = np.reshape(X_test, (10000, 784))

    print 'Data loaded.'
    return [X_train, X_test, y_train, y_test]
项目:huaat_ml_dl    作者:ieee820    | 项目源码 | 文件源码
def save_2d(label):
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    l_z,l_x,l_y = X_train.shape
    #cubes = np.ndarray([10,28,28],dtype=np.uint8)
    #new_1 = np.random(28,28)
    new_all = np.ones(784)
    new_all.resize(28,28)
    j = 1
    for i in range(0, l_z):
        #print X_train[i,:,:],y_train[i]
        #if j >= 10:
            #break;
        new = X_train[i,:,:]
        if y_train[i] == label :
            new_all = np.concatenate((new_all,new),axis=0)
            j = j +1

    #reshape and save
    new_all.resize(j,28,28)
    new_mini = new_all[1:,:,:]

    np.save('/home/yangjj/minist_npy/'+str(label),new_mini)
项目:dsde-deep-learning    作者:broadinstitute    | 项目源码 | 文件源码
def load_mnist(flatten=True):
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.astype('float32') / 255.
    x_test = x_test.astype('float32') / 255.

    if flatten:
        x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
        x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
    else:
        x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))  # adapt this if using `channels_first` image data format
        x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))  # adapt this if using `channels_first` image data format

    print(x_train.shape)
    print(x_test.shape)

    return (x_train, y_train), (x_test, y_test)
项目:dsde-deep-learning    作者:broadinstitute    | 项目源码 | 文件源码
def load_cifar(flatten=True):
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()

    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255.
    x_test /= 255.

    if flatten:
        x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
        x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
    else:
        x_train = np.reshape(x_train, (len(x_train), 32, 32, 3))  # adapt this if using `channels_first` image data format
        x_test = np.reshape(x_test, (len(x_test), 32, 32, 3))  # adapt this if using `channels_first` image data format

    print('bounds:', np.min(x_train), np.max(x_train))
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')  
    return (x_train, y_train), (x_test, y_test)
项目:kaos    作者:RuiShu    | 项目源码 | 文件源码
def __init__(self, nb_data, batchsize):
        super(MnistSemiSupervised, self).__init__(batchsize)
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        # reshape
        x_train = x_train.reshape(-1, 784)
        x_test = x_test.reshape(-1, 784)

        # subsample
        x_train = x_train.astype('float32')
        x_test = x_test.astype('float32')
        x_train /= 255
        x_test /= 255
        x_u, y_u = x_train, np.zeros((len(x_train), 10))
        x_l, y_l = self.balanced_sampler(x_train, y_train, nb_data)
        # Convert class vectors to binary class matrices.
        y_l = np_utils.to_categorical(y_l, 10)
        y_test = np_utils.to_categorical(y_test, 10)
        self.x_train, self.y_train = x_u, y_u
        self.x_label, self.y_label = x_l, y_l
        self.x_valid, self.y_valid = x_test, y_test
项目:pythontest    作者:gjq246    | 项目源码 | 文件源码
def __init__(self):
        self.img_rows = 28
        self.img_cols = 28
        self.channel = 1

        #(XX_train, YY_train),(X_test, Y_test) = mnist.load_data()
        print "111111"

        trainData, trainLabels = loadData('./mnisttrain',1000)
        self.x_train = trainData
        #self.x_train = XX_train
        #self.x_train = input_data.read_data_sets("mnist",\
        #   one_hot=True).train.images
        print "222222"
        self.x_train = self.x_train.reshape(-1, self.img_rows,\
            self.img_cols, 1).astype(np.float32)
        print "333333"


        self.DCGAN = DCGAN()
        self.discriminator =  self.DCGAN.discriminator_model()
        self.adversarial = self.DCGAN.adversarial_model()
        self.generator = self.DCGAN.generator()
项目:ild-cnn    作者:intact-project    | 项目源码 | 文件源码
def load_data():
    # loading mnist dataset
    (X_train, y_train), (X_val, y_val) = mnist.load_data()

    # adding a singleton dimension and rescale to [0,1]
    X_train = np.asarray(np.expand_dims(X_train,1))/float(255)
    X_val = np.asarray(np.expand_dims(X_val,1))/float(255)

    # labels to categorical vectors
    uniquelbls = np.unique(y_train)
    nb_classes = uniquelbls.shape[0]
    zbn = np.min(uniquelbls) # zero based numbering
    y_train = np_utils.to_categorical(y_train-zbn, nb_classes)
    y_val = np_utils.to_categorical(y_val-zbn, nb_classes)

    return (X_train, y_train), (X_val, y_val)
项目:mnist-multi-gpu    作者:normanheckscher    | 项目源码 | 文件源码
def get_cifar10():
    """Retrieve the CIFAR dataset and process the data."""
    # Set defaults.
    nb_classes = 10
    batch_size = 64
    input_shape = (3072,)

    # Get the data.
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train = x_train.reshape(50000, 3072)
    x_test = x_test.reshape(10000, 3072)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    # convert class vectors to binary class matrices
    y_train = to_categorical(y_train, nb_classes)
    y_test = to_categorical(y_test, nb_classes)

    return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
项目:mnist-multi-gpu    作者:normanheckscher    | 项目源码 | 文件源码
def get_mnist():
    """Retrieve the MNIST dataset and process the data."""
    # Set defaults.
    nb_classes = 10
    batch_size = 128
    input_shape = (784,)

    # Get the data.
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    # convert class vectors to binary class matrices
    y_train = to_categorical(y_train, nb_classes)
    y_test = to_categorical(y_test, nb_classes)

    return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
项目:kaggle_art    作者:small-yellow-duck    | 项目源码 | 文件源码
def do_split():
    if os.path.isdir('train') and os.path.isdir('test'):
        return

    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    os.mkdir('train')
    os.mkdir('test')

    np.savetxt('labels_train.csv', y_train, header='label')
    np.savetxt('labels_test.csv', y_test, header='label')

    for i in xrange(X_train.shape[0]):
        im = Image.fromarray(np.uint8(X_train[i]))
        im.save('train'+str(i)+'.png')

    for i in xrange(X_test.shape[0]):
        im = Image.fromarray(np.uint8(X_test[i]))
        im.save('test'+str(i)+'.png')   


#if __name__ == "__main__":
项目:kaggle_art    作者:small-yellow-duck    | 项目源码 | 文件源码
def do_split():
    if os.path.isdir('train') and os.path.isdir('test'):
        return

    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    os.mkdir('train')
    os.mkdir('test')

    np.savetxt('labels_train.csv', y_train, header='label')
    np.savetxt('labels_test.csv', y_test, header='label')

    for i in xrange(X_train.shape[0]):
        im = Image.fromarray(np.uint8(X_train[i]))
        im.save('train'+str(i)+'.png')

    for i in xrange(X_test.shape[0]):
        im = Image.fromarray(np.uint8(X_test[i]))
        im.save('test'+str(i)+'.png')
项目:kaggle_art    作者:small-yellow-duck    | 项目源码 | 文件源码
def do_split():
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    os.mkdir('train')
    os.mkdir('test')

    np.savetxt('labels_train.csv', y_train, header='label')
    np.savetxt('labels_test.csv', y_test, header='label')

    for i in xrange(X_train.shape[0]):
        im = Image.fromarray(np.uint8(X_train[i]))
        im.save('train'+str(i)+'.png')

    for i in xrange(X_test.shape[0]):
        im = Image.fromarray(np.uint8(X_test[i]))
        im.save('test'+str(i)+'.png')
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def get_data():
    # the data, shuffled and split between tran and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)[:max_train_samples]
    X_test = X_test.reshape(10000, 784)[:max_test_samples]
    X_train = X_train.astype("float32") / 255
    X_test = X_test.astype("float32") / 255

    # convert class vectors to binary class matrices
    y_train = y_train[:max_train_samples]
    y_test = y_test[:max_test_samples]
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    test_ids = np.where(y_test == np.array(weighted_class))[0]

    return (X_train, Y_train), (X_test, Y_test), test_ids
项目:DeepIV    作者:jhartford    | 项目源码 | 文件源码
def loadmnist():
    '''
    Load the mnist data once into global variables X_mnist and y_mnist.
    '''
    from keras.datasets import mnist
    global X_mnist
    global y_mnist
    train, test = mnist.load_data()
    X_mnist = []
    y_mnist = []
    for d in [train, test]:
        X, y = d
        X = X.astype('float32')
        X /= 255.
        idx = np.argsort(y)
        X_mnist.append(X[idx, :, :])
        y_mnist.append(y[idx])
项目:cyclegan_keras    作者:shadySource    | 项目源码 | 文件源码
def load_mnist():
    '''
    returns mnist_data
    '''
    # input image dimensions
    img_rows, img_cols = 28, 28

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    if k.image_data_format() == 'channels_first':
        x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
        input_shape = (1, img_rows, img_cols)
    else:
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
        input_shape = (img_rows, img_cols, 1)

    x_train = x_train.astype(k.floatx())
    x_train *= 0.96/255
    x_train += 0.02
    return input_shape, x_train
项目:nn-iterated-projections    作者:jn2clark    | 项目源码 | 文件源码
def get_data(n_train, n_test, nb_classes):
    # the data, shuffled and split between train and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    img_rows, img_cols = (28,28)
    # make some that are the same
    X_digits = {ind:X_train[np.where(y_train == ind)] for ind in range(10) }

    X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
    X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
    X_train = X_train[:n_train]
    X_test = X_test[:n_test]

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    print(X_train.shape[0], 'train samples')
    print(X_test.shape[0], 'test samples')

    # convert class vectors to binary class matrices
    Y_train = np_utils.to_categorical(y_train[:n_train], nb_classes)
    Y_test = np_utils.to_categorical(y_test[:n_test], nb_classes)

    return X_train, Y_train, X_test, Y_test
项目:nn-iterated-projections    作者:jn2clark    | 项目源码 | 文件源码
def get_cifar(nb_classes=10):
    # input image dimensions
    # img_rows, img_cols = 32, 32
    # # The CIFAR10 images are RGB.
    # img_channels = 3

    # The data, shuffled and split between train and test sets:
    (X_train, y_train), (X_test, y_test) = cifar10.load_data()

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    print('X_train shape:', X_train.shape)
    print(X_train.shape[0], 'train samples')
    print(X_test.shape[0], 'test samples')

    # Convert class vectors to binary class matrices.
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)

    return X_train, Y_train, X_test, Y_test
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def get_data(data_name='mnist', test_flag=False):
    if data_name == 'daudi':
        (X_train, y_train), (X_test, y_test) = daudi_load_data()
        if test_flag:
            X_train = X_test
        # approximately -0.2+1 to 0.2+1 --> -1. 1
        X_train = (X_train - 1.0) * 5.0
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])
    else:
        (X_train, y_train), (X_test, y_test) = mnist.load_data()
        if test_flag:
            X_train = X_test
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])

    return X_train
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def get_data(data_name='mnist', test_flag=False):
    if data_name == 'daudi':
        (X_train, y_train), (X_test, y_test) = daudi_load_data()
        if test_flag:
            X_train = X_test
        # approximately -0.2+1 to 0.2+1 --> -1. 1
        X_train = (X_train - 1.0) * 5.0 
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])
    else:
        (X_train, y_train), (X_test, y_test) = mnist.load_data()
        if test_flag:
            X_train = X_test
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5  
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])

    return X_train
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def __init___r0(self):
            """
            Load data but reduce the resolution (1/2, 1/2) for x and y direction
            After that, zoom is applied to expand larger size images.
            Then, the further processes are no needed to be updated.
            """
            (X_train, y_train), (X_test, y_test) = mnist.load_data()
            X_train, X_test = X_train[:, ::2, ::2], X_test[:, ::2, ::2]
            X_train_zoom = np.zeros((X_train.shape[0], X_train.shape[1] * 2, X_train.shape[2] * 2), dtype=X_train.dtype)
            X_test_zoom = np.zeros((X_test.shape[0], X_test.shape[1] * 2, X_test.shape[2] * 2), dtype=X_test.dtype)
            for i in range(X_train.shape[0]):
                X_train_zoom[i] = ndimage.interpolation.zoom(X_train[i], 2)
            for i in range(X_test.shape[0]):
                X_test_zoom[i] = ndimage.interpolation.zoom(X_test[i], 2)
            self.Org = (X_train_zoom, y_train), (X_test_zoom, y_test)
            self.Data = self.Org
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def test_cifar(self):
        print('cifar10')
        (X_train, y_train), (X_test, y_test) = cifar10.load_data()
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)

        print('cifar100 fine')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('fine')
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)

        print('cifar100 coarse')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('coarse')
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)
项目:braid    作者:Arya-ai    | 项目源码 | 文件源码
def test_parser(prototxt, t):
    from protoflow import ProtoFlow
    from berry.layers import print_layers_summary
    from keras.datasets import mnist

    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train[:, np.newaxis, ...]
    X_test = X_test[:, np.newaxis, ...]
    y_train = np.asarray([one_hot(y, 10) for y in list(y_train)])
    y_test = np.asarray([one_hot(y, 10) for y in list(y_test)])
    print X_train.shape, y_train.shape

    with tf.device('/gpu:2'):
        parser = ProtoFlow(prototxt, t, 100)
        model = parser.model
        print_layers_summary(model.layers)
        print[v.name for v in tf.trainable_variables()]
项目:python_utils    作者:Jayhello    | 项目源码 | 文件源码
def show_image():
    """
    this function is for a test to show, server image
    :return:
    """
    (X_train, y_train), (X_test, y_test) = load_data()
    # (X_train, y_train), (X_test, y_test) = mnist.load_data()
    # plot 4 images as gray scale
    plt.subplot(221)
    plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))
    plt.subplot(222)
    plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))
    plt.subplot(223)
    plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))
    plt.subplot(224)
    plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))
    # show the plot
    plt.show()
项目:python_utils    作者:Jayhello    | 项目源码 | 文件源码
def generate_data():
    (X_train, y_train), (X_test, y_test) = load_data()

    # flatten 28*28 images to a 784 vector for each image
    print X_train.shape[1], X_train.shape[2], X_train.shape
    # X_train.shape -> (60000L, 28L, 28L)
    num_pixels = X_train.shape[1] * X_train.shape[2]
    X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
    X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')

    # normalize inputs from 0-255 to 0-1
    X_train = X_train / 255
    X_test = X_test / 255

    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    # print y_train.shape, y_test.shape
    # y_train.shape -> (60000L, 10L), y_test.shape -> (10000L, 10L)
    num_classes = y_test.shape[1]

    return X_train, y_train, X_test, y_test
项目:provenance    作者:bmabey    | 项目源码 | 文件源码
def mnist_data():
    nb_classes = 10
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    # convert class vectors to binary class matrices
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return {
        'X_train': X_train,
        'Y_train': Y_train,
        'X_test': X_test,
        'Y_test': Y_test
    }


# TODO: test with RmsProp obj and evaluate if merged defaults should do a deepcopy
项目:Deep-Learning-with-Keras    作者:PacktPublishing    | 项目源码 | 文件源码
def mnist_data():
    (xtrain, ytrain), (xtest, ytest) = mnist.load_data()
    return mnist_process(xtrain), mnist_process(xtest)
项目:sef    作者:passalis    | 项目源码 | 文件源码
def load_mnist():
    """
    Loads the MNIST dataset
    :return:
    """

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape((x_train.shape[0], -1)) / 255.0
    x_test = x_test.reshape((x_test.shape[0], -1)) / 255.0

    return np.float32(x_train), y_train, np.float32(x_test), y_test
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def mnist (labels = range(10)):
    from keras.datasets import mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = (x_train.astype('float32') / 255.).round()
    x_test = (x_test.astype('float32') / 255.).round()
    x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
    x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
    def conc (x,y):
        return np.concatenate((y.reshape([len(y),1]),x),axis=1)
    def select (x,y):
        selected = np.array([elem for elem in conc(x, y) if elem[0] in labels])
        return np.delete(selected,0,1), np.delete(selected,np.s_[1::],1).flatten()
    x_train, y_train = select(x_train, y_train)
    x_test, y_test = select(x_test, y_test)
    return x_train, y_train, x_test, y_test
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def run_network(data=None, model=None, epochs=20, batch=256):
    try:
        start_time = time.time()
        if data is None:
            X_train, X_test, y_train, y_test = load_data()
        else:
            X_train, X_test, y_train, y_test = data

        if model is None:
            model = init_model()

        history = LossHistory()

        print 'Training model...'
        model.fit(X_train, y_train, nb_epoch=epochs, batch_size=batch,
                  callbacks=[history],
                  validation_data=(X_test, y_test), verbose=2)

        print "Training duration : {0}".format(time.time() - start_time)
        score = model.evaluate(X_test, y_test, batch_size=16)

        print "Network's test score [loss, accuracy]: {0}".format(score)
        return model, history.losses
    except KeyboardInterrupt:
        print ' KeyboardInterrupt'
        return model, history.losses
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def run_network(data=None, model=None, epochs=20, batch=BATCH_SIZE):
    try:
        start_time = time.time()
        if data is None:
            X_train, X_test, y_train, y_test = load_data()
        else:
            X_train, X_test, y_train, y_test = data

        if model is None:
            model = init_model()

        history = LossHistory()

        print 'Training model...'
        model.fit(X_train, y_train, nb_epoch=epochs, batch_size=batch,
                  callbacks=[history],
                  validation_data=(X_test, y_test), verbose=2)

        print "Training duration : {0}".format(time.time() - start_time)
        score = model.evaluate(X_test, y_test, batch_size=16)

        print "Network's test score [loss, accuracy]: {0}".format(score)
        return model, history.losses
    except KeyboardInterrupt:
        print ' KeyboardInterrupt'
        return model, history.losses
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_reuters():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (X_train, y_train), (X_test, y_test) = reuters.load_data()
        (X_train, y_train), (X_test, y_test) = reuters.load_data(maxlen=10)