Python keras.engine.topology 模块,Input() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用keras.engine.topology.Input()

项目:enet-keras    作者:PavlosMelissinos    | 项目源码 | 文件源码
def build(nc, w, h,
          loss='categorical_crossentropy',
          optimizer='adam',
          **kwargs):
    data_shape = w * h if None not in (w, h) else -1  # TODO: -1 or None?
    inp = Input(shape=(h, w, 3))
    enet = encoder.build(inp)
    enet = decoder.build(enet, nc=nc)
    name = 'enet_naive_upsampling'

    enet = Reshape((data_shape, nc))(enet)  # TODO: need to remove data_shape for multi-scale training

    enet = Activation('softmax')(enet)
    model = Model(inputs=inp, outputs=enet)

    model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy', 'mean_squared_error'])

    return model, name
项目:enet-keras    作者:PavlosMelissinos    | 项目源码 | 文件源码
def build(nc, w, h,
          loss='categorical_crossentropy',
          # optimizer='adadelta'):
          optimizer='adam',
          metrics=None,
          **kwargs):
    data_shape = w * h if None not in (w, h) else -1  # TODO: -1 or None?
    inp = Input(shape=(h, w, 3), name='image')
    enet = encoder.build(inp)
    enet = decoder.build(enet, nc=nc)
    name = 'enet_unpooling'

    # TODO: need to remove data_shape for multi-scale training
    enet = Reshape((data_shape, nc))(enet)

    enet = Activation('softmax', name='output')(enet)
    model = Model(inputs=inp, outputs=enet)

    if metrics is None:
        metrics = ['accuracy']
    model.compile(optimizer=optimizer, loss=loss, metrics=metrics)

    return model, name
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_trainable_argument():
    x = np.random.random((5, 3))
    y = np.random.random((5, 2))

    model = Sequential()
    model.add(Dense(2, input_dim=3, trainable=False))
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)

    # test with nesting
    input = Input(shape=(3,))
    output = model(input)
    model = Model(input, output)
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_trainable_argument():
    x = np.random.random((5, 3))
    y = np.random.random((5, 2))

    model = Sequential()
    model.add(Dense(2, input_dim=3, trainable=False))
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)

    # test with nesting
    input = Input(shape=(3,))
    output = model(input)
    model = Model(input, output)
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)
项目:ml-tools    作者:triagemd    | 项目源码 | 文件源码
def run_parallel_test(data_generator):
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')
    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)
    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model = Model([a, b], [a_2, b_2])
    model = make_parallel(model, 2)
    model.compile(optimizer, loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)

    trained_epochs = []
    tracker_cb = LambdaCallback(on_epoch_begin=lambda epoch, logs: trained_epochs.append(epoch))
    model.fit_generator(data_generator(4),
                        steps_per_epoch=3,
                        epochs=5,
                        initial_epoch=2,
                        callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_trainable_argument():
    x = np.random.random((5, 3))
    y = np.random.random((5, 2))

    model = Sequential()
    model.add(Dense(2, input_dim=3, trainable=False))
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)

    # test with nesting
    input = Input(shape=(3,))
    output = model(input)
    model = Model(input, output)
    model.compile('rmsprop', 'mse')
    out = model.predict(x)
    model.train_on_batch(x, y)
    out_2 = model.predict(x)
    assert_allclose(out, out_2)
项目:enet-keras    作者:PavlosMelissinos    | 项目源码 | 文件源码
def build(nc, w, h,
          loss='categorical_crossentropy',
          optimizer='adadelta',
          plot=False,
          **kwargs):
    # data_shape = input_shape[0] * input_shape[1] if input_shape and None not in input_shape else None
    data_shape = w * h if None not in (w, h) else -1  # TODO: -1 or None?
    inp = Input(shape=(h, w, 3))
    shapes = valid_shapes(inp)

    if h < 161 or w < 161:
        errmsg = 'Input image tensor must be at least 161pxs in both width and height'
        raise ValueError(errmsg)

    out = encoder.build(inp, valid_shapes=shapes)
    out = decoder.build(inp=inp, encoder=out, nc=nc, valid_shapes=shapes)

    out = Reshape((data_shape, nc))(out)  # TODO: need to remove data_shape for multi-scale training
    out = Activation('softmax')(out)
    model = Model(inputs=inp, outputs=out)

    model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy', 'mean_squared_error'])
    name = 'icnet'

    if plot:
        plot_model(model, to_file='{}.png'.format(name), show_shapes=True)

    return model, name
项目:minos    作者:guybedo    | 项目源码 | 文件源码
def _build_single_device_model(blueprint, device):
    import tensorflow as tf
    with tf.device(get_logical_device(device)):
        inputs = Input(shape=(blueprint.layout.input_size,))
        row_input = inputs
        for row in blueprint.layout.rows:
            row_input = _build_row_model(row_input, row)
        final_layer_input = _maybe_merge_inputs(row_input)
        predictions = Dense(
            blueprint.layout.output_size,
            activation=blueprint.layout.output_activation)(final_layer_input)
        return Model(input=inputs, output=predictions)