Python keras.engine 模块,Model() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用keras.engine.Model()

项目:reinforced-race    作者:timediv    | 项目源码 | 文件源码
def __init__(self, environment: EnvironmentInterface, memory: Memory, image_size: int,
                 random_action_policy: RandomActionPolicy, batch_size: int, discount: float,
                 should_load_model: bool, should_save: bool, action_type: Any,
                 create_model: Callable[[Any, int], Model], batches_per_frame: int):
        self.environment = environment
        self.random_action_policy = random_action_policy
        self.memory = memory
        self.image_size = image_size
        self.batch_size = batch_size
        self.discount = discount
        self.action_type = action_type
        self.should_save = should_save
        self.should_exit = False
        self.default_sigint_handler = signal.getsignal(signal.SIGINT)
        self.training_info = TrainingInfo(should_load_model)
        self.mean_training_time = RunningAverage(1000, self.training_info['mean_training_time'])
        if batches_per_frame:
            self.training_info['batches_per_frame'] = batches_per_frame

        if should_load_model and Path(self.MODEL_PATH).is_file():
            self.model = load_model(self.MODEL_PATH)
        else:
            self.model = create_model((self.image_size, self.image_size, StateAssembler.FRAME_COUNT),
                                      action_type.COUNT)
项目:speechless    作者:JuliusKunze    | 项目源码 | 文件源码
def loss_net(self) -> Model:
        """Returns the network that yields a loss given both input spectrograms and labels. Used for training."""
        input_batch = self._input_batch_input
        label_batch = Input(name=Wav2Letter.InputNames.label_batch, shape=(None,), dtype='int32')
        label_lengths = Input(name=Wav2Letter.InputNames.label_lengths, shape=(1,), dtype='int64')

        asg_transition_probabilities_variable = backend.variable(value=self.asg_transition_probabilities,
                                                                 name="asg_transition_probabilities")
        asg_initial_probabilities_variable = backend.variable(value=self.asg_initial_probabilities,
                                                              name="asg_initial_probabilities")
        # Since Keras doesn't currently support loss functions with extra parameters,
        # we define a custom lambda layer yielding one single real-valued CTC loss given the grapheme probabilities:
        loss_layer = Lambda(Wav2Letter._asg_lambda if self.use_asg else Wav2Letter._ctc_lambda,
                            name='asg_loss' if self.use_asg else 'ctc_loss',
                            output_shape=(1,),
                            arguments={"transition_probabilities": asg_transition_probabilities_variable,
                                       "initial_probabilities": asg_initial_probabilities_variable} if self.use_asg else None)

        # ([asg_transition_probabilities_variable, asg_initial_probabilities_variable] if self.use_asg else [])

        # This loss layer is placed atop the predictive network and provided with additional arguments,
        # namely the label batch and prediction/label sequence lengths:
        loss = loss_layer(
            [self.predictive_net(input_batch), label_batch, self._prediction_lengths_input, label_lengths])

        loss_net = Model(inputs=[input_batch, label_batch, self._prediction_lengths_input, label_lengths],
                         outputs=[loss])
        # Since loss is already calculated in the last layer of the net, we just pass through the results here.
        # The loss dummy labels have to be given to satify the Keras API.
        loss_net.compile(loss=lambda dummy_labels, ctc_loss: ctc_loss, optimizer=self.optimizer)
        return loss_net
项目:speechless    作者:JuliusKunze    | 项目源码 | 文件源码
def decoding_net(self):
        decoding_layer = Lambda(self._decode_lambda, name='ctc_decode')

        prediction_batch = self.predictive_net(self._input_batch_input)
        decoded = decoding_layer([prediction_batch, self._prediction_lengths_input])

        return Model(inputs=[self._input_batch_input, self._prediction_lengths_input], outputs=[decoded])
项目:ActiveBoundary    作者:MiriamHu    | 项目源码 | 文件源码
def create_joint_model(input_dim, init_w, init_b, gamma, weight_hinge, learning_rate, decay, regulariser=None):
    image_input = Input(shape=(input_dim,), dtype='float32', name='image_input')
    db_input = Input(shape=(input_dim,), dtype='float32', name="db_input")
    shared_layer = Dense(1, input_dim=input_dim, kernel_regularizer=regulariser, kernel_initializer='uniform',
                         activation="linear", use_bias=True, name='shared_layer')
    _ = shared_layer(image_input)
    _ = shared_layer(db_input)
    model = Model(inputs=[image_input, db_input], outputs=[shared_layer.get_output_at(0), shared_layer.get_output_at(1)])
    adam = Adam(lr=learning_rate)  # SGD should also work because convex loss function, but Adam converges faster.
    model.compile(optimizer=adam, loss=['hinge', 'mse'], loss_weights=[weight_hinge, gamma],
                  metrics=[my_accuracy, 'mse'])
    return model
项目:ikelos    作者:braingineer    | 项目源码 | 文件源码
def test1():
    seq_size = 10
    batch_size = 10 
    rnn_size = 1
    xin = Input(batch_shape=(batch_size, seq_size,1))
    xtop = Input(batch_shape=(batch_size, seq_size))
    xbranch, xsummary = RTTN(rnn_size, return_sequences=True)([xin, xtop])

    model = Model(input=[xin, xtop], output=[xbranch, xsummary])
    model.compile(loss='MSE', optimizer='SGD')
    data_gen = generate_data_batch(batch_size, seq_size)
    model.fit_generator(generator=data_gen, samples_per_epoch=1000, nb_epoch=100)
项目:ikelos    作者:braingineer    | 项目源码 | 文件源码
def crop(model, layer_or_tensor):
    if hasattr(layer_or_tensor, '_keras_history'):
        ins, outs = crop_to_tensor(model, layer_or_tensor)
    else:
        ins, outs = crop_to_layer(model, layer_or_tensor)
    return Model(ins, outs, preloaded_data=model.preloaded_data)
项目:ConvMF_V2.0    作者:daicoolb    | 项目源码 | 文件源码
def __init__(self,first_dimension,output_dimension,item_num,user_feature):

        self.maxlen=item_num
        self.maxfea=user_feature

        model_input_user_rating=Input(shape=[item_num],name='user_rating')
        model_input_user_sideinformation=Input(shape=(user_feature,),name='user_sideinformation')

        #model_input_user_rating=model_input_user_rating+0.5*np.random.normal(loc=0,scale=100,size=item_num)
        #model_input_user_sideinformation=model_input_user_sideinformation+0.5*np.random.normal(loc=0,scale=100,size=user_feature)


        model_input=concatenate([model_input_user_rating,model_input_user_sideinformation])

        encoder_1=Dense(first_dimension,activation='relu',name='encoder_1')(model_input)
        #encoder_conc=concatenate([encoder_1,model_input_user_sideinformation])

        encoder_2=Dense(output_dimension,activation='relu',name='user_matrix')(encoder_1)
        #decoder_conc=concatenate([encoder_2,model_input_user_sideinformation])

        decoder_3=Dense(first_dimension,activation='relu',name='decoder_1')(encoder_2)
        #decoder_conc=concatenate([decoder_3,model_input_user_sideinformation])

        model_output_user_rating=Dense(item_num,activation='sigmoid',name='output_model_rating')(decoder_3)
        model_output_user_sideinformation=Dense(user_feature,activation='sigmoid',name='output_model_side')(decoder_3)

        output_model=Model(inputs=[model_input_user_rating,model_input_user_sideinformation],outputs=[model_output_user_rating,model_output_user_sideinformation,encoder_2])
        output_model.compile(optimizer='rmsprop',loss={'output_model_rating':'mse','output_model_side':'mse','user_matrix':'mse'},loss_weights=[1,1,0])
        self.model=output_model
项目:PHDMF    作者:daicoolb    | 项目源码 | 文件源码
def __init__(self,first_dimension,output_dimension,item_num,user_feature):

        self.maxlen=item_num
        self.maxfea=user_feature

        model_input_user_rating=Input(shape=[item_num],name='user_rating')
        model_input_user_sideinformation=Input(shape=(user_feature,),name='user_sideinformation')

        #model_input_user_rating=model_input_user_rating+0.5*np.random.normal(loc=0,scale=100,size=item_num)
        #model_input_user_sideinformation=model_input_user_sideinformation+0.5*np.random.normal(loc=0,scale=100,size=user_feature)


        model_input=concatenate([model_input_user_rating,model_input_user_sideinformation])

        encoder_1=Dense(first_dimension,activation='relu',name='encoder_1')(model_input)
        #encoder_conc=concatenate([encoder_1,model_input_user_sideinformation])

        encoder_2=Dense(output_dimension,activation='relu',name='user_matrix')(encoder_1)
        #decoder_conc=concatenate([encoder_2,model_input_user_sideinformation])

        decoder_3=Dense(first_dimension,activation='relu',name='decoder_1')(encoder_2)
        #decoder_conc=concatenate([decoder_3,model_input_user_sideinformation])

        model_output_user_rating=Dense(item_num,activation='sigmoid',name='output_model_rating')(decoder_3)
        model_output_user_sideinformation=Dense(user_feature,activation='sigmoid',name='output_model_side')(decoder_3)

        output_model=Model(inputs=[model_input_user_rating,model_input_user_sideinformation],outputs=[model_output_user_rating,model_output_user_sideinformation,encoder_2])
        output_model.compile(optimizer='rmsprop',loss={'output_model_rating':'mse','output_model_side':'mse','user_matrix':'mse'},loss_weights=[1,1,0])
        self.model=output_model
项目:wavenet    作者:basveeling    | 项目源码 | 文件源码
def build_model(fragment_length, nb_filters, nb_output_bins, dilation_depth, nb_stacks, use_skip_connections,
                learn_all_outputs, _log, desired_sample_rate, use_bias, res_l2, final_l2):
    def residual_block(x):
        original_x = x
        # TODO: initalization, regularization?
        # Note: The AtrousConvolution1D with the 'causal' flag is implemented in github.com/basveeling/keras#@wavenet.
        tanh_out = CausalAtrousConvolution1D(nb_filters, 2, atrous_rate=2 ** i, border_mode='valid', causal=True,
                                             bias=use_bias,
                                             name='dilated_conv_%d_tanh_s%d' % (2 ** i, s), activation='tanh',
                                             W_regularizer=l2(res_l2))(x)
        sigm_out = CausalAtrousConvolution1D(nb_filters, 2, atrous_rate=2 ** i, border_mode='valid', causal=True,
                                             bias=use_bias,
                                             name='dilated_conv_%d_sigm_s%d' % (2 ** i, s), activation='sigmoid',
                                             W_regularizer=l2(res_l2))(x)
        x = layers.Merge(mode='mul', name='gated_activation_%d_s%d' % (i, s))([tanh_out, sigm_out])

        res_x = layers.Convolution1D(nb_filters, 1, border_mode='same', bias=use_bias,
                                     W_regularizer=l2(res_l2))(x)
        skip_x = layers.Convolution1D(nb_filters, 1, border_mode='same', bias=use_bias,
                                      W_regularizer=l2(res_l2))(x)
        res_x = layers.Merge(mode='sum')([original_x, res_x])
        return res_x, skip_x

    input = Input(shape=(fragment_length, nb_output_bins), name='input_part')
    out = input
    skip_connections = []
    out = CausalAtrousConvolution1D(nb_filters, 2, atrous_rate=1, border_mode='valid', causal=True,
                                    name='initial_causal_conv')(out)
    for s in range(nb_stacks):
        for i in range(0, dilation_depth + 1):
            out, skip_out = residual_block(out)
            skip_connections.append(skip_out)

    if use_skip_connections:
        out = layers.Merge(mode='sum')(skip_connections)
    out = layers.Activation('relu')(out)
    out = layers.Convolution1D(nb_output_bins, 1, border_mode='same',
                               W_regularizer=l2(final_l2))(out)
    out = layers.Activation('relu')(out)
    out = layers.Convolution1D(nb_output_bins, 1, border_mode='same')(out)

    if not learn_all_outputs:
        raise DeprecationWarning('Learning on just all outputs is wasteful, now learning only inside receptive field.')
        out = layers.Lambda(lambda x: x[:, -1, :], output_shape=(out._keras_shape[-1],))(
            out)  # Based on gif in deepmind blog: take last output?

    out = layers.Activation('softmax', name="output_softmax")(out)
    model = Model(input, out)

    receptive_field, receptive_field_ms = compute_receptive_field()

    _log.info('Receptive Field: %d (%dms)' % (receptive_field, int(receptive_field_ms)))
    return model
项目:bisemantic    作者:wpm    | 项目源码 | 文件源码
def create(cls, classes, maximum_tokens, embedding_size, lstm_units, dropout, bidirectional):
        """
        Create a model that labels semantic relationships between text pairs.

        The text pairs are passed in as two aligned matrices of size
        (batch size, maximum embedding tokens, embedding size). They are generated by TextPairEmbeddingGenerator.

        :param classes: the number of distinct classes to categorize
        :type classes: int
        :param maximum_tokens: maximum number of embedded tokens
        :type maximum_tokens: int
        :param embedding_size: size of the embedding vector
        :type embedding_size: int
        :param lstm_units: number of hidden units in the shared LSTM
        :type lstm_units: int
        :param dropout:  dropout rate or None for no dropout
        :type dropout: float or None
        :param bidirectional: should the shared LSTM be bidirectional?
        :type bidirectional: bool
        :return: the created model
        :rtype: TextPairClassifier
        """
        # Create the model geometry.
        input_shape = (maximum_tokens, embedding_size)
        # Input two sets of aligned text pairs.
        input_1 = Input(input_shape)
        input_2 = Input(input_shape)
        # Apply the same LSTM to each.
        if bidirectional:
            lstm = Bidirectional(LSTM(lstm_units), name="lstm")
        else:
            lstm = LSTM(lstm_units, name="lstm")
        r1 = lstm(input_1)
        r2 = lstm(input_2)
        # Concatenate the embeddings with their product and squared difference.
        p = multiply([r1, r2])
        negative_r2 = Lambda(lambda x: -x)(r2)
        d = add([r1, negative_r2])
        q = multiply([d, d])
        v = [r1, r2, p, q]
        lstm_output = concatenate(v)
        if dropout is not None:
            lstm_output = Dropout(dropout, name="dropout")(lstm_output)
        # A single-layer perceptron maps the concatenated vector to the labels. It has a number of hidden states equal
        # to the square root of the length of the concatenated vector.
        m = sum(t.shape[1].value for t in v)
        perceptron = Dense(math.floor(math.sqrt(m)), activation="relu")(lstm_output)
        logistic_regression = Dense(classes, activation="softmax", name="softmax")(perceptron)
        model = Model([input_1, input_2], logistic_regression, "Text pair classifier")
        model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
        return cls(model)