我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用keras.initializations.get()。
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializations.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
def __init__(self, output_dim, freq_dim, hidden_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.freq_dim = freq_dim self.hidden_dim = hidden_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(ITOSFM, self).__init__(**kwargs)
def __init__(self, init='glorot_uniform', U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None, U_constraint=None, b_start_constraint=None, b_end_constraint=None, weights=None, **kwargs): self.supports_masking = True self.uses_learning_phase = True self.input_spec = [InputSpec(ndim=3)] self.init = initializations.get(init) self.U_regularizer = regularizers.get(U_regularizer) self.b_start_regularizer = regularizers.get(b_start_regularizer) self.b_end_regularizer = regularizers.get(b_end_regularizer) self.U_constraint = constraints.get(U_constraint) self.b_start_constraint = constraints.get(b_start_constraint) self.b_end_constraint = constraints.get(b_end_constraint) self.initial_weights = weights super(ChainCRF, self).__init__(**kwargs)
def __init__(self, output_dim, memory_dim=128, memory_size=20, controller_output_dim=100, location_shift_range=1, num_read_head=1, num_write_head=1, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, R_regularizer=None, b_regularizer=None, W_y_regularizer=None, W_xi_regularizer=None, W_r_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(NTM, self).__init__(**kwargs)
def __init__(self, input_channels, output_shape, num_filters, layer_sizes, init="glorot_uniform"): """ Parameters ---------- output_shape : list_like Size of the generated matrix (x, y) layer_sizes : array_like List of nodes in hidden layers init : str Keras initializer to use for weights """ self.input_channels = input_channels self.num_filters = num_filters self.output_shape = output_shape self.layer_sizes = layer_sizes self.init = initializations.get(init) self.bias_init = initializations.get("zero") self.setup_weights() self.setup_output()
def __init__(self, output_shape, layer_sizes, scale, init="glorot_uniform"): """ Parameters ---------- output_shape : list_like Size of the generated matrix (x, y) layer_sizes : array_like List of nodes in hidden layers init : str Keras initializer to use for weights """ self.output_shape = output_shape self.layer_sizes = layer_sizes self.init = initializations.get(init) self.bias_init = initializations.get("zero") self.scale = scale self.setup_weights() self.setup_output()
def __init__(self, filter_size, input_shape, filters_in, batch_size): """ Parameters: ----------- filter_size : int Size of the filter in 1 dimension (total = filter_size ** 2) input_shape: list_like Size of input image this filter is working on. This is used for generating separate filters for each pixel position of the image filter_in : int Number of channels in input batch_size : int Batch size """ self.filter_size = filter_size self.input_shape = input_shape self.filters_in = filters_in self.batch_size = batch_size self.init = initializations.get("glorot_uniform") self.b_init = initializations.get("zero") self.setup_weights()
def __init__(self,output_dim,mem_vec_dim,init='glorot_uniform', activation='linear', weights=None, activity_regularizer=None,input_dim=None, **kwargs): ''' Params: output_dim: ????? mem_vec_dim: query????? ''' self.init = initializations.get(init) self.activation = activations.get(activation) self.output_dim = output_dim self.input_dim = input_dim self.mem_vector_dim=mem_vec_dim self.activity_regularizer = regularizers.get(activity_regularizer) self.initial_weights = weights if self.input_dim: kwargs['input_shape'] = (self.input_dim,) super(MemoryNet,self).__init__(**kwargs)
def __init__(self, output_dim, L, init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.L = L if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(RHN, self).__init__(**kwargs)
def __init__(self, input_dim, output_dim, init='uniform', input_length=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, mask_zero=False, weights=None, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.init = initializations.get(init) self.input_length = input_length self.mask_zero = mask_zero self.W_constraint = constraints.get(W_constraint) self.constraints = [self.W_constraint] self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.initial_weights = weights kwargs['input_shape'] = (self.input_dim,) super(Embedding2D, self).__init__(**kwargs)
def __init__(self, input_dim, output_dim, init='uniform', input_length=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, mask_zero=False, weights=None, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.init = initializations.get(init) self.input_length = input_length self.mask_zero = mask_zero self.W_constraint = constraints.get(W_constraint) self.constraints = [self.W_constraint] self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.initial_weights = weights kwargs['input_shape'] = (self.input_dim,) super(Embedding, self).__init__(**kwargs)
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, input_dim=None, **kwargs): self.downsampling_factor = downsampling_factor self.init = initializations.get(init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.initial_weights = weights self.input_dim = input_dim if self.input_dim: kwargs['input_shape'] = (self.input_dim,) self.input_spec = [InputSpec(ndim=4)] super(EltWiseProduct, self).__init__(**kwargs)
def __init__(self, nb_classes, frequency_table=None, mode=0, init='glorot_uniform', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=True, verbose=False, **kwargs): ''' # Arguments: nb_classes: Number of classes. frequency_table: list. Frequency of each class. More frequent classes will have shorter huffman codes. mode: integer. One of [0, 1] verbose: boolean. Set to true to see the progress of building huffman tree. ''' self.nb_classes = nb_classes if frequency_table is None: frequency_table = [1] * nb_classes self.frequency_table = frequency_table self.mode = mode self.init = initializations.get(init) self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.initial_weights = weights self.verbose = verbose super(Huffmax, self).__init__(**kwargs)
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', activation='tanh', beta_init='zero', gamma_init='one', W_regularizer=None, U_regularizer=None, b_regularizer=None, gamma_regularizer=None, beta_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.activation = activations.get(activation) self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_regularizer = regularizers.get(beta_regularizer) self.dropout_W = dropout_W self.dropout_U = dropout_U self.epsilon = 1e-5 if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(LN_SimpleRNN, self).__init__(**kwargs)
def __init__(self, input_dim, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid'): #self.input_dim = input_dim self.output_dim = int(output_dim / 2) self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.input_dim = input_dim #self.input = K.placeholder(input_shape) # initial states: 2 all-zero tensor of shape (output_dim) self.forward_lstm = LSTM(input_dim = input_dim, output_dim = self.output_dim) self.backward_lstm = LSTM(input_dim = input_dim, output_dim = self.output_dim) self.params = self.forward_lstm.params + self.backward_lstm.params #if self.initial_weights is not None: # self.set_weights(self.initial_weights) # del self.initial_weights
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(DualCurrent, self).__init__(**kwargs)
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, shape_key=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.shape_key = shape_key or {} if self.dropout_W or self.dropout_U: self.uses_learning_phase = True kwargs['consume_less'] = 'gpu' super(RTTN, self).__init__(**kwargs) self.num_actions = 4
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(DecoderVaeLSTM, self).__init__(**kwargs)
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W = dropout_W self.dropout_U = dropout_U self.stateful = False if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(QRNN, self).__init__(**kwargs)
def __init__(self, score_dim=1, num_hidden_layers=0, proj_dim=None, init='uniform', composition_type='HPCT', **kwargs): self.composition_type = composition_type self.supports_masking = True self.num_hidden_layers = num_hidden_layers self.proj_dim = proj_dim self.init = initializations.get(init) self.proj_head = None self.proj_prep = None self.proj_child = None self.scorer = None self.hidden_layers = [] self.score_dim = score_dim self.allowed_compositions = [] super(PrepositionPredictor, self).__init__(**kwargs)
def __init__(self, init='uniform', projection_dim=50, weights=None, **kwargs): self.intra_attention_weights = weights self.init = initializations.get(init) self.projection_dim = projection_dim super(IntraAttention, self).__init__(**kwargs)
def __init__(self, h, output_dim, init='glorot_uniform', **kwargs): self.init = initializations.get(init) self.h = h self.output_dim = output_dim #removing the regularizers and the dropout super(AttenLayer, self).__init__(**kwargs) # this seems necessary in order to accept 3 input dimensions # (samples, timesteps, features) self.input_spec=[InputSpec(ndim=3)]
def __init__(self, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): """ Keras Layer that implements an Attention mechanism for temporal data. Supports Masking. Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756] # Input shape 3D tensor with shape: `(samples, steps, features)`. # Output shape 2D tensor with shape: `(samples, features)`. :param kwargs: Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True. The dimensions are inferred based on the output shape of the RNN. Example: model.add(LSTM(64, return_sequences=True)) model.add(Attention()) """ self.supports_masking = True self.init = initializations.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(Attention, self).__init__(**kwargs)
def get_initializer(initializer): if keras_2: from keras import initializers return initializers.get(initializer) else: from keras import initializations return initializations.get(initializer)
def __init__(self, **kwargs): self.init = initializations.get('normal') #self.input_spec = [InputSpec(ndim=3)] super(AttLayer, self).__init__(**kwargs)
def __init__(self, input_channels, rows, cols, output_shape, num_filters, hidden_dim, init="glorot_uniform"): """ Parameters ---------- output_shape : list_like Size of the generated matrix (x, y) layer_sizes : array_like List of nodes in hidden layers init : str Keras initializer to use for weights """ self.input_rows = rows self.input_cols = cols self.input_channels = input_channels self.num_filters = num_filters self.output_shape = output_shape self.hidden_dim = hidden_dim self.init = initializations.get(init) self.bias_init = initializations.get("zero") self.setup_weights() self.num_param = np.prod(self.output_shape) * self.num_filters * \ self.input_channels
def __init__(self, input_channels, output_shape, num_filters, hidden_dim, init="glorot_uniform"): """ Parameters ---------- output_shape : list_like Size of the generated matrix (x, y) layer_sizes : array_like List of nodes in hidden layers init : str Keras initializer to use for weights """ self.input_channels = input_channels self.num_filters = num_filters self.output_shape = output_shape self.hidden_dim = hidden_dim self.init = initializations.get(init) self.bias_init = initializations.get("zero") self.setup_weights() self.setup_output() self.num_param = np.prod(self.output_shape) * self.num_filters * \ self.input_channels
def __init__(self, output_shape, z_dim, layer_sizes, scale, init="glorot_uniform"): """ Parameters ---------- output_shape : list_like Size of the generated matrix (x, y) z_dim : int Size of the input z vector layer_sizes : list_like List of nodes in hidden layers scale : float Scale used for generating the coordinate matrix (see get_coordinates* functions) init : str Keras initializer to use for weights """ self.output_shape = output_shape self.layer_sizes = layer_sizes self.z_dim = z_dim self.init = initializations.get(init) self.bias_init = initializations.get("zero") self.scale = scale self.setup_weights() self.setup_output()
def __init__(self, epsilon=1e-5, weights=None, beta_init='zero', gamma_init='one', **kwargs): self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.epsilon = epsilon super(InstanceNormalization, self).__init__(**kwargs)
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs): self.momentum = momentum self.axis = axis self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.initial_weights = weights super(Scale, self).__init__(**kwargs)
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None, input_length1=None, input_length2=None, **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.constraints = [self.W_constraint, self.b_constraint] self.initial_weights = weights self.input_dim = input_dim self.input_length1 = input_length1 self.input_length2 = input_length2 if self.input_dim: kwargs['input_shape'] = (self.input_length1, self.input_length2, self.input_dim) self.input = K.placeholder(ndim=4) super(HigherOrderTimeDistributedDense, self).__init__(**kwargs)
def __init__(self, input_shape, context='word', init='glorot_uniform', activation='tanh', weights=None, **kwargs): self.init = initializations.get(init) self.activation = activations.get(activation) self.context = context self.td1, self.td2, self.wd = input_shape self.initial_weights = weights kwargs['input_shape'] = input_shape super(TensorAttention, self).__init__(**kwargs)
def __init__(self, output_dim, init='glorot_uniform', **kwargs): self.init = initializations.get(init) self.output_dim = output_dim def hshape(n): from math import sqrt, ceil l1 = ceil(sqrt(n)) l2 = ceil(n / l1) return int(l1), int(l2) self.n_classes, self.n_outputs_per_class = hshape(output_dim) super(HierarchicalSoftmax, self).__init__(**kwargs)
def __init__(self, nb_filter, nb_row, nb_col, transform_bias=-1, init='glorot_uniform', activation='relu', weights=None, border_mode='same', subsample=(1, 1), dim_ordering='th', W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): if border_mode not in {'valid', 'same'}: raise Exception('Invalid border mode for Convolution2D:', border_mode) self.nb_filter = nb_filter self.nb_row = nb_row self.nb_col = nb_col self.transform_bias = transform_bias self.init = initializations.get(init, dim_ordering=dim_ordering) self.activation = activations.get(activation) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.subsample = tuple(subsample) assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}' self.dim_ordering = dim_ordering self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.input_spec = [InputSpec(ndim=4)] self.initial_weights = weights super(Conv2DHighway, self).__init__(**kwargs)
def __init__(self, nb_filter, nb_row, nb_col, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', dim_ordering="tf", border_mode="valid", sub_sample=(1, 1), W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.nb_filter = nb_filter self.nb_row = nb_row self.nb_col = nb_col self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.border_mode = border_mode self.subsample = sub_sample assert dim_ordering in {'tf', "th"}, 'dim_ordering must be in {tf,"th}' self.dim_ordering = dim_ordering kwargs["nb_filter"] = nb_filter kwargs["nb_row"] = nb_row kwargs["nb_col"] = nb_col kwargs["dim_ordering"] = dim_ordering self.W_regularizer = W_regularizer self.U_regularizer = U_regularizer self.b_regularizer = b_regularizer self.dropout_W, self.dropout_U = dropout_W, dropout_U super(LSTMConv2D, self).__init__(**kwargs)
def __init__(self, output_dim, weights=None, activation='linear', return_mask=True, **kwargs): self.supports_masking = True self.output_dim = output_dim self.init = initializations.get('glorot_uniform') self.activation = activations.get(activation) self.initial_weights = weights self.return_mask = return_mask super(Projection, self).__init__(**kwargs)
def on_epoch_end(self, epoch, logs={}): current = logs.get(self.monitor) if self.monitor_op(current, self.best): self.best = current self.best_epoch = epoch self.wait = 0 else: if self.wait >= self.patience: if self.verbose > 0: print('Epoch %05d: early stopping' % (epoch)) self.model.stop_training = True self.wait += 1
def __init__(self, init='zero', weights=None, **kwargs): self.init = initializations.get(init) self.initial_weights = weights self.alphas = None super(MyPReLU, self).__init__(**kwargs)
def __init__(self, output_dim, init = 'glorot_uniform', inner_init = 'orthogonal', activation = 'tanh', W_regularizer = None, U_regularizer = None, b_regularizer = None, dropout_W = 0.0, dropout_U = 0.0, tau=100, dt=20, noise=.1, dale_ratio = None, **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.tau = tau self.dt = dt self.noise = noise self.dale_ratio = dale_ratio if dale_ratio: #make dales law matrix dale_vec = np.ones(output_dim) dale_vec[int(dale_ratio*output_dim):] = -1 dale = np.diag(dale_vec) self.Dale = K.variable(dale) if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(leak_recurrent, self).__init__(**kwargs)
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=False, input_dim=None, dale_ratio = .8, **kwargs): self.init = initializations.get(init) self.activation = activations.get(activation) self.output_dim = output_dim self.input_dim = input_dim self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.initial_weights = weights self.input_spec = [InputSpec(ndim=2)] # OUR CHANGE self.dale_ratio = dale_ratio if dale_ratio: dale_vec = np.ones((input_dim, 1)) dale_vec[int(dale_ratio*input_dim):, 0] = 0 self.Dale = K.variable(dale_vec) if self.input_dim: kwargs['input_shape'] = (self.input_dim,) super(Dense, self).__init__(**kwargs)
def __init__(self, weights=None, axis=-1, momentum=0.9, beta_init='zero', gamma_init='one', **kwargs): self.momentum = momentum self.axis = axis self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.initial_weights = weights super(Scale, self).__init__(**kwargs)
def __init__(self, nb_filter, nb_row, nb_col, rate=2, init='glorot_uniform', activation='linear', weights=None, border_mode='valid', dim_ordering=K.image_dim_ordering(), W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): if K._BACKEND != 'tensorflow': raise Exception('TensorBoard callback only works ' 'with the TensorFlow backend.') if border_mode not in {'valid', 'same'}: raise Exception('Invalid border mode for Convolution2D:', border_mode) self.nb_filter = nb_filter self.nb_row = nb_row self.nb_col = nb_col self.rate = rate self.init = initializations.get(init, dim_ordering=dim_ordering) self.activation = activations.get(activation) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}' self.dim_ordering = dim_ordering self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.input_spec = [InputSpec(ndim=4)] self.initial_weights = weights super(ATrousConvolution2D, self).__init__(**kwargs)
def __init__(self, nb_filter, nb_row, nb_col, init='glorot_uniform', activation='linear', weights=None, border_mode='valid', subsample=(1, 1), dim_ordering=K.image_dim_ordering(), W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): if border_mode not in {'valid', 'same'}: raise Exception('Invalid border mode for Convolution2D:', border_mode) self.nb_filter = nb_filter self.nb_row = nb_row self.nb_col = nb_col self.dim_ordering = dim_ordering self.init = initializations.get(init, dim_ordering=self.dim_ordering) self.activation = activations.get(activation) assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}' self.border_mode = border_mode self.subsample = tuple(subsample) self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.input_spec = [InputSpec(ndim=4)] self.initial_weights = weights super(ConvolutionTranspose2D, self).__init__(**kwargs)
def __init__(self, epsilon=1e-6, mode=0, axis=-1, momentum=0.9, weights=None, beta_init='zero', gamma_init='one', **kwargs): self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.epsilon = epsilon self.mode = mode self.axis = axis self.momentum = momentum self.initial_weights = weights if self.mode == 0: self.uses_learning_phase = True super(BatchNormalization, self).__init__(**kwargs)
def __init__(self, output_dim, **kwargs): self.output_dim = output_dim self.init = initializations.get('glorot_uniform') super(SimLayer, self).__init__(**kwargs)