Python keras.initializations 模块,normal() 实例源码

我们从Python开源项目中,提取了以下20个代码示例,用于说明如何使用keras.initializations.normal()

项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)):
    noise = np.random.normal(0,1,size=(example,randomDim))
    generatedImage = generator.predict(noise)
    generatedImage = generatedImage.reshape(example,28,28)

    plt.figure(figsize=figsize)

    for i in range(example):
        plt.subplot(dim[0],dim[1],i+1)
        plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray')
        '''drop the x and y axis'''
        plt.axis('off')
    plt.tight_layout()

    if not os.path.exists('generated_image'):
        os.mkdir('generated_image')
    plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
项目:simple-wgan-with-minist    作者:ray0809    | 项目源码 | 文件源码
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)):
    noise = np.random.normal(0,1,size=(example,randomDim))
    generatedImage = generator.predict(noise)
    generatedImage = generatedImage.reshape(example,28,28)

    plt.figure(figsize=figsize)

    for i in range(example):
        plt.subplot(dim[0],dim[1],i+1)
        plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray')
        '''drop the x and y axis'''
        plt.axis('off')
    plt.tight_layout()

    if not os.path.exists('generated_image'):
        os.mkdir('generated_image')
    plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
项目:detection-2016-nipsws    作者:imatge-upc    | 项目源码 | 文件源码
def get_q_network(weights_path):
    model = Sequential()
    model.add(Dense(1024, init=lambda shape, name: normal(shape, scale=0.01, name=name), input_shape=(25112,)))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(1024, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(6, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
    model.add(Activation('linear'))
    adam = Adam(lr=1e-6)
    model.compile(loss='mse', optimizer=adam)
    if weights_path != "0":
        model.load_weights(weights_path)
    return model
项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def initNormal(shape,name=None):
    return initializations.normal(shape,scale=0.2,name=name)
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_normal(tensor_shape):
    _runner(initializations.normal, tensor_shape, target_mean=0., target_std=0.05)
项目:neural-style-keras    作者:robertomest    | 项目源码 | 文件源码
def weights_init(shape, name=None, dim_ordering=None):
    return normal(shape, scale=0.01, name=name)
项目:tf-wgan    作者:kuleshov    | 项目源码 | 文件源码
def conv2D_init(shape, dim_ordering='tf', name=None):
   return initializations.normal(shape, scale=0.02, dim_ordering=dim_ordering, name=name)
项目:EUNN-theano    作者:iguanaus    | 项目源码 | 文件源码
def unitary_svd_init(shape, name=None):
    assert shape[0]==shape[1]

    Re=initializations.normal(shape,scale=1.0,name=name).get_value()
    Im=initializations.normal(shape,scale=1.0,name=name).get_value()
    X = Re+1j*Im
    [U,S,V]=np.linalg.svd(X)
    X = np.dot(U,V)
    ReX = np.real(X)
    ImX = np.imag(X)
    Xaug = np.concatenate([ReX,ImX],axis=0)
    return K.variable(Xaug,name=name)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_normal(tensor_shape):
    _runner(initializations.normal, tensor_shape, target_mean=0., target_std=0.05)
项目:CnnJapaneseCharacter    作者:yukoba    | 项目源码 | 文件源码
def my_init(shape, name=None):
    return initializations.normal(shape, scale=0.1, name=name)


# Best val_loss: 0.0205 - val_acc: 0.9978 (just tried only once)
# 30 minutes on Amazon EC2 g2.2xlarge (NVIDIA GRID K520)
项目:DNN_Recsys_demo    作者:ShouldChan    | 项目源码 | 文件源码
def embedding_learning(train_data, user_dic, artist_dic, context_list, n_users, n_items):
    # User embeddings
    UC = np.random.normal(0.0, 0.01, (n_users, dim_num))
    # Item embeddings
    IC = np.random.normal(0.0, 0.01, (n_items, dim_num))

    try:
        for iteration in range(max_iters):
            print 'loading...iteration: %d'%iteration
            t = time.time()

            for each_data in train_data:
                u_i, i, w_i = each_data
                w_i = w_i ** dis_coef
                # print artist_dic[i]
                for u_j in context_list[u_i]:

                    IC[artist_dic[i]] += learning_rate * ((1 - sigmoid(w_i)) * 2 * alpha  * (UC[user_dic[u_i]] - UC[user_dic[u_j]]) - 2 * lamda * IC[artist_dic[i]])
                    UC[user_dic[u_i]] += learning_rate * ((1 - sigmoid(w_i)) * 2 * alpha  * (IC[artist_dic[i]] - UC[user_dic[u_i]]) - 2 * lamda * UC[user_dic[u_i]])
                    UC[user_dic[u_j]] += learning_rate * ((1 - sigmoid(w_i)) * 2 * alpha  * (IC[artist_dic[i]] - UC[user_dic[u_j]]) - 2 * lamda * UC[user_dic[u_j]])

                    # print IC[artist_dic[i]]
            print 'Iter: %d   elapsed:  %fseconds'%(iteration, time.time() - t)
    finally:
        np.save(model_dir + 'Item_Emb', IC)
        np.save(model_dir + 'User_Emb', UC)
        np.savetxt(model_dir + 'Item_Emb.txt', IC)
        np.savetxt(model_dir + 'User_Emb.txt', UC)
        print 'Model saved...'
项目:DNN_Recsys_demo    作者:ShouldChan    | 项目源码 | 文件源码
def init_normal(shape, name=None):
    return initializations.normal(shape, scale=0.01, name=name)
项目:simple-wgan-with-minist    作者:ray0809    | 项目源码 | 文件源码
def initNormal(shape,name=None):
    return initializations.normal(shape,scale=0.2,name=name)
项目:cppn-keras    作者:hochthom    | 项目源码 | 文件源码
def my_init(shape, name=None):
    return initializations.normal(shape, scale=1.2, name=name)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_normal(tensor_shape):
    _runner(initializations.normal, tensor_shape, target_mean=0., target_std=0.05)
项目:urnn    作者:stwisdom    | 项目源码 | 文件源码
def unitary_svd_init(shape, name=None):
    assert shape[0]==shape[1]

    Re=initializations.normal(shape,scale=1.0,name=name).get_value()
    Im=initializations.normal(shape,scale=1.0,name=name).get_value()
    X = Re+1j*Im
    [U,S,V]=np.linalg.svd(X)
    X = np.dot(U,V)
    ReX = np.real(X)
    ImX = np.imag(X)
    Xaug = np.concatenate([ReX,ImX],axis=0)
    return K.variable(Xaug,name=name)
项目:keras_zoo    作者:david-vazquez    | 项目源码 | 文件源码
def create_classifier(body, data, n_classes, l2_reg=0.):
    # Include last layers
    top = BatchNormalization(mode=0, axis=channel_idx, name="bn7")(body)
    top = Activation('relu', name="relu7")(top)
    top = AtrousConvolution2D(512, 3, 3, 'he_normal', atrous_rate=(12, 12),
                              border_mode='same', name="conv6a",
                              W_regularizer=l2(l2_reg))(top)
    top = Activation('relu', name="conv6a_relu")(top)
    name = "hyperplane_num_cls_%d_branch_%d" % (n_classes, 12)

    def my_init(shape, name=None, dim_ordering='th'):
        return initializations.normal(shape, scale=0.01, name=name)
    top = AtrousConvolution2D(n_classes, 3, 3, my_init,
                              atrous_rate=(12, 12), border_mode='same',
                              name=name, W_regularizer=l2(l2_reg))(top)

    top = Deconvolution2D(n_classes, 16, 16, top._keras_shape, bilinear_init,
                          'linear', border_mode='valid', subsample=(8, 8),
                          bias=False, name="upscaling_"+str(n_classes),
                          W_regularizer=l2(l2_reg))(top)

    top = CropLayer2D(data, name='score')(top)
    top = NdSoftmax()(top)

    return top


# Create model of basic segnet
项目:DDPG-Keras-Torcs    作者:yanpanlau    | 项目源码 | 文件源码
def create_actor_network(self, state_size,action_dim):
        print("Now we build the model")
        S = Input(shape=[state_size])   
        h0 = Dense(HIDDEN1_UNITS, activation='relu')(S)
        h1 = Dense(HIDDEN2_UNITS, activation='relu')(h0)
        Steering = Dense(1,activation='tanh',init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1)  
        Acceleration = Dense(1,activation='sigmoid',init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1)   
        Brake = Dense(1,activation='sigmoid',init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1) 
        V = merge([Steering,Acceleration,Brake],mode='concat')          
        model = Model(input=S,output=V)
        return model, model.trainable_weights, S
项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def train(epochs=1,batchsize=128):
    batchCount = X_train.shape[0] / batchsize
    print 'Epochs',epochs
    print 'Bathc_size',batchsize
    print 'Batches per epoch',batchCount
    #range ande xrange the different is a list and a generator
    for e in xrange(1,epochs+1):
        print '-'*15 , 'Epoch %d' % e , '-'*15
        for _ in tqdm(xrange(batchCount)):
            #Get a random set of input noise and images
            noise = np.random.normal(0,1,size=[batchsize,randomDim])
            imageBatch = X_train[np.random.randint(0,X_train.shape[0],size=batchsize)]

            #generate fake MNIST images
            generatedImages = generator.predict(noise)

            #Default is axis=0, equal to vstack  is concate up and down 
            X = np.concatenate([imageBatch,generatedImages])

            #Labels for generated and real data
            yDis = np.ones(2*batchsize)

            #one-sided label smoothing
            yDis[:batchsize] = -1

            #Train discriminator
            discriminator.trainable = True
            dloss = discriminator.train_on_batch(X,yDis)

            #Train generator
            noise = np.random.normal(0,1,size=[batchsize,randomDim])
            yGen = np.ones(batchsize) * -1
            discriminator.trainable = False
            gloss = gan.train_on_batch(noise,yGen)

            '''
            d_weight = discriminator.get_weights()
            d_weight = clip_weight(d_weight,-0.01,0.01)
            discriminator.set_weights(d_weight)
            '''
        #Store loss of most recent batch from this epoch
        Dloss.append(dloss)
        Gloss.append(gloss)

        if e == 1 or e % 5 == 0:
            plotGeneratedImages(e)
            saveModels(e)

    plot_loss(e)
项目:simple-wgan-with-minist    作者:ray0809    | 项目源码 | 文件源码
def train(epochs=1,batchsize=128):
    batchCount = X_train.shape[0] / batchsize
    print 'Epochs',epochs
    print 'Bathc_size',batchsize
    print 'Batches per epoch',batchCount
    #range ande xrange the different is a list and a generator
    for e in xrange(1,epochs+1):
        print '-'*15 , 'Epoch %d' % e , '-'*15
        for _ in tqdm(xrange(batchCount)):
            #Get a random set of input noise and images
            noise = np.random.normal(0,1,size=[batchsize,randomDim])
            imageBatch = X_train[np.random.randint(0,X_train.shape[0],size=batchsize)]

            #generate fake MNIST images
            generatedImages = generator.predict(noise)

            #Default is axis=0, equal to vstack  is concate up and down 
            X = np.concatenate([imageBatch,generatedImages])

            #Labels for generated and real data
            yDis = np.ones(2*batchsize)

            #one-sided label smoothing
            yDis[:batchsize] = -1

            #Train discriminator
            discriminator.trainable = True
            dloss = discriminator.train_on_batch(X,yDis)

            #Train generator
            noise = np.random.normal(0,1,size=[batchsize,randomDim])
            yGen = np.ones(batchsize) * -1
            discriminator.trainable = False
            gloss = gan.train_on_batch(noise,yGen)

            '''
            d_weight = discriminator.get_weights()
            d_weight = clip_weight(d_weight,-0.01,0.01)
            discriminator.set_weights(d_weight)
            '''
        #Store loss of most recent batch from this epoch
        Dloss.append(dloss)
        Gloss.append(gloss)

        if e == 1 or e % 5 == 0:
            plotGeneratedImages(e)
            saveModels(e)

    plot_loss(e)