Python keras.initializations 模块,uniform() 实例源码

我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用keras.initializations.uniform()

项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_uniform(tensor_shape):
    _runner(initializations.uniform, tensor_shape, target_mean=0.,
            target_max=0.05, target_min=-0.05)
项目:ddpg-ros-keras    作者:robosamir    | 项目源码 | 文件源码
def create_critic_network(self, state_size,action_dim):
        print("Now we build the model")
        S = Input(shape=[state_size])  
        A = Input(shape=[action_dim],name='action2')   
        w = Dense(HIDDEN1_UNITS, init='he_uniform',activation='relu')(S)
        h = merge([w,A],mode='concat')    
        h3 = Dense(HIDDEN2_UNITS, init='he_uniform',activation='relu')(h)
        V = Dense(action_dim,init=lambda shape, name: uniform(shape, scale=3e-3, name=name),activation='linear')(h3)   
        model = Model(input=[S,A],output=V)
        adam = Adam(lr=self.LEARNING_RATE)
        model.compile(loss='mse', optimizer=adam)
        return model, A, S
项目:ddpg-ros-keras    作者:robosamir    | 项目源码 | 文件源码
def create_actor_network(self, state_size,action_dim):
        print("Now we build the model")
        model = Sequential()
        S = Input(shape=[state_size])   
        h0 = Dense(100, init='he_uniform',activation='relu')(S)
        h1 = Dense(100, init='he_uniform',activation='relu')(h0)
        V = Dense(8, init=lambda shape, name: uniform(shape, scale=3e-3, name=name),activation='tanh')(h1)
        model = Model(input=S,output=V)
        return model, model.trainable_weights, S
项目:EUNN-theano    作者:iguanaus    | 项目源码 | 文件源码
def unitary_ASB2016_init(shape, name=None):
    assert shape[0]==shape[1]
    N=shape[1]

    theta = initializations.uniform((3,N),scale=np.pi,name='{}_theta'.format(name))
    reflection = initializations.glorot_uniform((2,2*N),name='{}_reflection'.format(name))
    idxperm = np.random.permutation(N)
    idxpermaug = np.concatenate((idxperm,N+idxperm))

    Iaug=augLeft(np.concatenate((np.eye(N),np.zeros((N,N))),axis=0),module=np).astype(np.float32)
    Uaug=times_unitary_ASB2016(Iaug,N,[theta,reflection,idxpermaug])

    return Uaug,theta,reflection,idxpermaug
项目:knowledgeflow    作者:3rduncle    | 项目源码 | 文件源码
def buildConvolution(self, name):
        filters = self.params.get('filters')
        nb_filter = self.params.get('nb_filter')
        assert filters
        assert nb_filter
        convs = []
        for fsz in filters:
            layer_name = '%s-conv-%d' % (name, fsz)
            conv = Convolution1D(
                nb_filter=nb_filter,
                filter_length=fsz,
                border_mode='valid',
                #activation='relu',
                subsample_length=1,
                init='glorot_uniform',
                #init=init,
                #init=lambda shape, name: initializations.uniform(shape, scale=0.01, name=name),
                W_constraint=maxnorm(self.params.get('w_maxnorm')),
                b_constraint=maxnorm(self.params.get('b_maxnorm')),
                #W_regularizer=regularizers.l2(self.params.get('w_l2')),
                #b_regularizer=regularizers.l2(self.params.get('b_l2')),
                #input_shape=(self.q_length, self.wdim),
                name=layer_name
            )
            convs.append(conv)
        self.layers['%s-convolution' % name] = convs
项目:knowledgeflow    作者:3rduncle    | 项目源码 | 文件源码
def buildConvolution(self, name):
        filters = self.params.get('filters')
        nb_filter = self.params.get('nb_filter')
        assert filters
        assert nb_filter
        convs = []
        for fsz in filters:
            layer_name = '%s-conv-%d' % (name, fsz)
            conv = Convolution1D(
                nb_filter=nb_filter,
                filter_length=fsz,
                border_mode='valid',
                #activation='relu',
                subsample_length=1,
                init='glorot_uniform',
                #init=init,
                #init=lambda shape, name: initializations.uniform(shape, scale=0.01, name=name),
                W_constraint=maxnorm(self.params.get('w_maxnorm')),
                b_constraint=maxnorm(self.params.get('b_maxnorm')),
                #W_regularizer=regularizers.l2(self.params.get('w_l2')),
                #b_regularizer=regularizers.l2(self.params.get('b_l2')),
                #input_shape=(self.q_length, self.wdim),
                name=layer_name
            )
            convs.append(conv)
        self.layers['%s-convolution' % name] = convs
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_uniform(tensor_shape):
    _runner(initializations.uniform, tensor_shape, target_mean=0.,
            target_max=0.05, target_min=-0.05)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_uniform(tensor_shape):
    _runner(initializations.uniform, tensor_shape, target_mean=0.,
            target_max=0.05, target_min=-0.05)
项目:DeepLearaning_TrafficFlowPrediction    作者:KarisM    | 项目源码 | 文件源码
def glorot_uniform_sigm(shape, name=None, dim_ordering='th'):
    """
    Glorot style weight initializer for sigmoid activations.

    Like keras.initializations.glorot_uniform(), but with uniform random interval like in 
    Deeplearning.net tutorials.
    They claim that the initialization random interval should be
      +/- sqrt(6 / (fan_in + fan_out)) (like Keras' glorot_uniform()) when tanh activations are used, 
      +/- 4 sqrt(6 / (fan_in + fan_out)) when sigmoid activations are used.
    See: http://deeplearning.net/tutorial/mlp.html#going-from-logistic-regression-to-mlp
    """
    fan_in, fan_out = get_fans(shape, dim_ordering=dim_ordering)
    s = 4. * np.sqrt(6. / (fan_in + fan_out))
    return uniform(shape, s, name=name)
项目:urnn    作者:stwisdom    | 项目源码 | 文件源码
def unitary_ASB2016_init(shape, name=None):
    assert shape[0]==shape[1]
    N=shape[1]

    theta = initializations.uniform((3,N),scale=np.pi,name='{}_theta'.format(name))
    reflection = initializations.glorot_uniform((2,2*N),name='{}_reflection'.format(name))
    idxperm = np.random.permutation(N)
    idxpermaug = np.concatenate((idxperm,N+idxperm))

    Iaug=augLeft(np.concatenate((np.eye(N),np.zeros((N,N))),axis=0),module=np).astype(np.float32)
    Uaug=times_unitary_ASB2016(Iaug,N,[theta,reflection,idxpermaug])

    return Uaug,theta,reflection,idxpermaug
项目:keras_bn_library    作者:bnsnapper    | 项目源码 | 文件源码
def glorot_uniform_sigm(shape, name=None, dim_ordering='th'):
    """
    Glorot style weight initializer for sigmoid activations.

    Like keras.initializations.glorot_uniform(), but with uniform random interval like in 
    Deeplearning.net tutorials.
    They claim that the initialization random interval should be
      +/- sqrt(6 / (fan_in + fan_out)) (like Keras' glorot_uniform()) when tanh activations are used, 
      +/- 4 sqrt(6 / (fan_in + fan_out)) when sigmoid activations are used.
    See: http://deeplearning.net/tutorial/mlp.html#going-from-logistic-regression-to-mlp
    """
    fan_in, fan_out = get_fans(shape, dim_ordering=dim_ordering)
    s = 4. * np.sqrt(6. / (fan_in + fan_out))
    return uniform(shape, s, name=name)
项目:EUNN-theano    作者:iguanaus    | 项目源码 | 文件源码
def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        if self.stateful:
            self.reset_states()
        else:
            # initial states: all-zero tensor of shape (output_dim)
            self.states = [None]
        input_dim = input_shape[2]
        self.input_dim = input_dim

        self.W = self.init((input_dim, self.output_dim),
                           name='{}_W'.format(self.name))
        #self.b = K.zeros((self.N,), name='{}_b'.format(self.name))
        self.b = initializations.uniform((self.N,),scale=0.01,name='{}_b'.format(self.name))
        self.baug=K.tile(self.b,[2])

        h0 = self.h0_mean+initializations.uniform((2*self.N,),scale=0.01).get_value()
        self.h0 = K.variable(h0,name='{}_h0'.format(self.name))

        if ('full' in self.unitary_impl):   
            # we're using a full unitary recurrence matrix

            if (self.inner_init=='svd'):
                # use SVD to initialize U
                self.U = unitary_svd_init((self.N, self.N),name='{}_U'.format(self.name))
            elif (self.inner_init=='ASB2016'):
                # use parameterization of [ASB2016] to initialize U
                Uaug,_,_,_ = unitary_ASB2016_init((self.N,self.N))
                Uaug=Uaug.eval()
                self.U=K.variable(np.concatenate((Uaug[:self.N,:self.N],Uaug[:self.N,self.N:]),axis=0),name='{}_U'.format(self.name))

            self.Uaug=augRight(self.U,module=K)

        elif (self.unitary_impl=='ASB2016'):
            # we're using the parameterization of [Arjovsky, Shah, Bengio 2016]
            self.Uaug,self.theta,self.reflection,_ = unitary_ASB2016_init((self.N, self.N),name=self.name)

        # set the trainable weights
        if ('full' in self.unitary_impl):
            self.trainable_weights = [self.W, self.U, self.b, self.h0]
        elif (self.unitary_impl=='ASB2016'):
            self.trainable_weights = [self.W, self.theta, self.reflection, self.b, self.h0]

        self.regularizers = []
        #if self.W_regularizer:
        #    self.W_regularizer.set_param(self.W)
        #    self.regularizers.append(self.W_regularizer)
        #if self.U_regularizer:
        #    self.U_regularizer.set_param(self.U)
        #    self.regularizers.append(self.U_regularizer)
        #if self.b_regularizer:
        #    self.b_regularizer.set_param(self.b)
        #    self.regularizers.append(self.b_regularizer)

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
项目:urnn    作者:stwisdom    | 项目源码 | 文件源码
def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        if self.stateful:
            self.reset_states()
        else:
            # initial states: all-zero tensor of shape (output_dim)
            self.states = [None]
        input_dim = input_shape[2]
        self.input_dim = input_dim

        self.W = self.init((input_dim, self.output_dim),
                           name='{}_W'.format(self.name))
        #self.b = K.zeros((self.N,), name='{}_b'.format(self.name))
        self.b = initializations.uniform((self.N,),scale=0.01,name='{}_b'.format(self.name))
        self.baug=K.tile(self.b,[2])

        h0 = self.h0_mean+initializations.uniform((2*self.N,),scale=0.01).get_value()
        self.h0 = K.variable(h0,name='{}_h0'.format(self.name))

        if ('full' in self.unitary_impl):   
            # we're using a full unitary recurrence matrix

            if (self.inner_init=='svd'):
                # use SVD to initialize U
                self.U = unitary_svd_init((self.N, self.N),name='{}_U'.format(self.name))
            elif (self.inner_init=='ASB2016'):
                # use parameterization of [ASB2016] to initialize U
                Uaug,_,_,_ = unitary_ASB2016_init((self.N,self.N))
                Uaug=Uaug.eval()
                self.U=K.variable(np.concatenate((Uaug[:self.N,:self.N],Uaug[:self.N,self.N:]),axis=0),name='{}_U'.format(self.name))

            self.Uaug=augRight(self.U,module=K)

        elif (self.unitary_impl=='ASB2016'):
            # we're using the parameterization of [Arjovsky, Shah, Bengio 2016]
            self.Uaug,self.theta,self.reflection,_ = unitary_ASB2016_init((self.N, self.N),name=self.name)

        # set the trainable weights
        if ('full' in self.unitary_impl):
            self.trainable_weights = [self.W, self.U, self.b, self.h0]
        elif (self.unitary_impl=='ASB2016'):
            self.trainable_weights = [self.W, self.theta, self.reflection, self.b, self.h0]

        self.regularizers = []
        #if self.W_regularizer:
        #    self.W_regularizer.set_param(self.W)
        #    self.regularizers.append(self.W_regularizer)
        #if self.U_regularizer:
        #    self.U_regularizer.set_param(self.U)
        #    self.regularizers.append(self.U_regularizer)
        #if self.b_regularizer:
        #    self.b_regularizer.set_param(self.b)
        #    self.regularizers.append(self.b_regularizer)

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights