Python keras.initializers 模块,RandomUniform() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用keras.initializers.RandomUniform()

项目:nn_playground    作者:DingKe    | 项目源码 | 文件源码
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[1]

        if self.H == 'Glorot':
            self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot H: {}'.format(self.H))
        if self.kernel_lr_multiplier == 'Glorot':
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot learning rate multiplier: {}'.format(self.kernel_lr_multiplier))

        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                     initializer=self.kernel_initializer,
                                     name='kernel',
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight(shape=(self.output_dim,),
                                     initializer=self.bias_initializer,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)
        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True
项目:nn_playground    作者:DingKe    | 项目源码 | 文件源码
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[1]

        if self.H == 'Glorot':
            self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot H: {}'.format(self.H))
        if self.kernel_lr_multiplier == 'Glorot':
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot learning rate multiplier: {}'.format(self.kernel_lr_multiplier))

        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                     initializer=self.kernel_initializer,
                                     name='kernel',
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight(shape=(self.output_dim,),
                                     initializer=self.bias_initializer,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)
        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True
项目:nn_playground    作者:DingKe    | 项目源码 | 文件源码
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[1]

        if self.H == 'Glorot':
            self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot H: {}'.format(self.H))
        if self.kernel_lr_multiplier == 'Glorot':
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
            #print('Glorot learning rate multiplier: {}'.format(self.lr_multiplier))

        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                     initializer=self.kernel_initializer,
                                     name='kernel',
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight(shape=(self.output_dim,),
                                     initializer=self.bias_initializer,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)
        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None
        self.built = True
项目:nn_playground    作者:DingKe    | 项目源码 | 文件源码
def build(self, input_shape):
        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1 
        if input_shape[channel_axis] is None:
                raise ValueError('The channel dimension of the inputs '
                                 'should be defined. Found `None`.')

        input_dim = input_shape[channel_axis]
        kernel_shape = self.kernel_size + (input_dim, self.filters)

        base = self.kernel_size[0] * self.kernel_size[1]
        if self.H == 'Glorot':
            nb_input = int(input_dim * base)
            nb_output = int(self.filters * base)
            self.H = np.float32(np.sqrt(1.5 / (nb_input + nb_output)))
            #print('Glorot H: {}'.format(self.H))

        if self.kernel_lr_multiplier == 'Glorot':
            nb_input = int(input_dim * base)
            nb_output = int(self.filters * base)
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5/ (nb_input + nb_output)))
            #print('Glorot learning rate multiplier: {}'.format(self.lr_multiplier))

        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=kernel_shape,
                                 initializer=self.kernel_initializer,
                                 name='kernel',
                                 regularizer=self.kernel_regularizer,
                                 constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight((self.output_dim,),
                                     initializer=self.bias_initializers,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)

        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None

        # Set input spec.
        self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim})
        self.built = True
项目:nn_playground    作者:DingKe    | 项目源码 | 文件源码
def build(self, input_shape):
        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1 
        if input_shape[channel_axis] is None:
                raise ValueError('The channel dimension of the inputs '
                                 'should be defined. Found `None`.')

        input_dim = input_shape[channel_axis]
        kernel_shape = self.kernel_size + (input_dim, self.filters)

        base = self.kernel_size[0] * self.kernel_size[1]
        if self.H == 'Glorot':
            nb_input = int(input_dim * base)
            nb_output = int(self.filters * base)
            self.H = np.float32(np.sqrt(1.5 / (nb_input + nb_output)))
            #print('Glorot H: {}'.format(self.H))

        if self.kernel_lr_multiplier == 'Glorot':
            nb_input = int(input_dim * base)
            nb_output = int(self.filters * base)
            self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5/ (nb_input + nb_output)))
            #print('Glorot learning rate multiplier: {}'.format(self.lr_multiplier))

        self.kernel_constraint = Clip(-self.H, self.H)
        self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
        self.kernel = self.add_weight(shape=kernel_shape,
                                 initializer=self.kernel_initializer,
                                 name='kernel',
                                 regularizer=self.kernel_regularizer,
                                 constraint=self.kernel_constraint)

        if self.use_bias:
            self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
            self.bias = self.add_weight((self.output_dim,),
                                     initializer=self.bias_initializers,
                                     name='bias',
                                     regularizer=self.bias_regularizer,
                                     constraint=self.bias_constraint)

        else:
            self.lr_multipliers = [self.kernel_lr_multiplier]
            self.bias = None

        # Set input spec.
        self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim})
        self.built = True
项目:keras-image-captioning    作者:danieljl    | 项目源码 | 文件源码
def __init__(self,
                 learning_rate=None,
                 vocab_size=None,
                 embedding_size=None,
                 rnn_output_size=None,
                 dropout_rate=None,
                 bidirectional_rnn=None,
                 rnn_type=None,
                 rnn_layers=None,
                 l1_reg=None,
                 l2_reg=None,
                 initializer=None,
                 word_vector_init=None):
        """
        If an arg is None, it will get its value from config.active_config.
        """
        self._learning_rate = learning_rate or active_config().learning_rate
        self._vocab_size = vocab_size or active_config().vocab_size
        self._embedding_size = embedding_size or active_config().embedding_size
        self._rnn_output_size = (rnn_output_size or
                                 active_config().rnn_output_size)
        self._dropout_rate = dropout_rate or active_config().dropout_rate
        self._rnn_type = rnn_type or active_config().rnn_type
        self._rnn_layers = rnn_layers or active_config().rnn_layers
        self._word_vector_init = (word_vector_init or
                                  active_config().word_vector_init)

        self._initializer = initializer or active_config().initializer
        if self._initializer == 'vinyals_uniform':
            self._initializer = RandomUniform(-0.08, 0.08)

        if bidirectional_rnn is None:
            self._bidirectional_rnn = active_config().bidirectional_rnn
        else:
            self._bidirectional_rnn = bidirectional_rnn

        l1_reg = l1_reg or active_config().l1_reg
        l2_reg = l2_reg or active_config().l2_reg
        self._regularizer = l1_l2(l1_reg, l2_reg)

        self._keras_model = None

        if self._vocab_size is None:
            raise ValueError('config.active_config().vocab_size cannot be '
                             'None! You should check your config or you can '
                             'explicitly pass the vocab_size argument.')

        if self._rnn_type not in ('lstm', 'gru'):
            raise ValueError('rnn_type must be either "lstm" or "gru"!')

        if self._rnn_layers < 1:
            raise ValueError('rnn_layers must be >= 1!')

        if self._word_vector_init is not None and self._embedding_size != 300:
            raise ValueError('If word_vector_init is not None, embedding_size '
                             'must be 300')
项目:basis    作者:vaitech    | 项目源码 | 文件源码
def to_embedding(self, vector_dim=None, learn_difference=False, name=None,
                     embeddings_initializer='he_normal'):
        from keras.layers import Embedding

        W = None

        if self.W is not None:
            W = np.zeros((
                self.size + len(self._special_tokens),
                self.W.shape[1]
            ))

            W[len(self._special_tokens):, :] = self.W
            W = [W]
            vector_dim = self.W.shape[1]
        else:
            if vector_dim is None:
                ValueError('If container has no matrix W defined, vector '
                           'dimension for embedding must be explicitly '
                           'specified.')

        emb = Embedding(
            input_dim=self.size + len(self._special_tokens),
            output_dim=vector_dim,
            weights=W,
            mask_zero=True,
            name=name,
            embeddings_initializer=embeddings_initializer
        )

        if learn_difference:

            if W is None:
                logger.warning('Learning a difference on top of non-pretrained '
                               'word vectors is not recommended')

            from keras.models import Model
            from keras.initializers import RandomUniform
            from keras.layers import Input, add

            emb.trainable = False
            delta_initializer = RandomUniform(minval=-0.005, maxval=0.005)

            if name is None:
                name = emb.name

            delta = Embedding(
                input_dim=self.size + len(self._special_tokens),
                output_dim=vector_dim,
                embeddings_initializer=delta_initializer,
                mask_zero=True,
                name=name + '/delta_correction'
            )

            x = Input((None, ), dtype='int32', name=name + '/input')

            e = add([emb(x), delta(x)], name=name + '/addition')

            emb = Model(x, e, name='shifted_emb/' + name)

        return emb