我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用keras.layers.recurrent.time_distributed_dense()。
def step(self, x_input, states): #print "x_input:", x_input, x_input.shape # <TensorType(float32, matrix)> input_shape = self.input_spec[0].shape en_seq = states[-1] _, [h, c] = super(PointerLSTM, self).step(x_input, states[:-1]) # vt*tanh(W1*e+W2*d) dec_seq = K.repeat(h, input_shape[1]) Eij = time_distributed_dense(en_seq, self.W1, output_dim=1) Dij = time_distributed_dense(dec_seq, self.W2, output_dim=1) U = self.vt * tanh(Eij + Dij) U = K.squeeze(U, 2) # make probability tensor pointer = softmax(U) return pointer, [h, c]
def step(self, x, states): h_tm1, c_tm1, y_tm1, B, U, H = states s = K.dot(c_tm1, self.W_h) + self.b_h s = K.repeat(s, self.input_length) energy = time_distributed_dense(s + H, self.W_a, self.b_a) energy = K.squeeze(energy, 2) alpha = K.softmax(energy) alpha = K.repeat(alpha, self.input_dim) alpha = K.permute_dimensions(alpha, (0, 2, 1)) weighted_H = H * alpha v = K.sum(weighted_H, axis=1) y, new_states = super(AttentionDecoder, self).step(v, states[:-1]) return y, new_states
def preprocess_input(self, x): if self.consume_less == 'cpu': input_shape = self.input_spec[0].shape input_dim = input_shape[2] timesteps = input_shape[1] return time_distributed_dense(x, self.W, self.b, self.dropout_W, input_dim, self.output_dim, timesteps) else: return x
def preprocess_input(self, x): if self.consume_less == 'cpu': input_shape = K.int_shape(x) input_dim = input_shape[2] timesteps = input_shape[1] x_f = time_distributed_dense(x, self.W_f, self.b_f, self.dropout_W, input_dim, self.output_dim, timesteps) x_h = time_distributed_dense(x, self.W_h, self.b_h, self.dropout_W, input_dim, self.output_dim, timesteps) return K.concatenate([x_f, x_h], axis=2) else: return x
def preprocess_input(self, x): if self.consume_less == 'cpu': input_shape = K.int_shape(x) input_dim = input_shape[2] timesteps = input_shape[1] return time_distributed_dense(x, self.W, self.b, self.dropout_W, input_dim, self.hidden_recurrent_dim, timesteps) else: return x