我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用keras.layers.Dense()。
def tsinalis(input_shape, n_classes): """ Input size should be [batch, 1d, 2d, ch] = (None, 1, 15000, 1) """ model = Sequential(name='Tsinalis') model.add(Conv1D (kernel_size = (200), filters = 20, input_shape=input_shape, activation='relu')) print(model.input_shape) print(model.output_shape) model.add(MaxPooling1D(pool_size = (20), strides=(10))) print(model.output_shape) model.add(keras.layers.core.Reshape([20,-1,1])) print(model.output_shape) model.add(Conv2D (kernel_size = (20,30), filters = 400, activation='relu')) print(model.output_shape) model.add(MaxPooling2D(pool_size = (1,10), strides=(1,2))) print(model.output_shape) model.add(Flatten()) print(model.output_shape) model.add(Dense (500, activation='relu')) model.add(Dense (500, activation='relu')) model.add(Dense(n_classes, activation = 'softmax',activity_regularizer=keras.regularizers.l2() )) model.compile( loss='categorical_crossentropy', optimizer=keras.optimizers.SGD(), metrics=[keras.metrics.categorical_accuracy]) return model
def make_generator(): """Creates a generator model that takes a 100-dimensional noise vector as a "seed", and outputs images of size 28x28x1.""" model = Sequential() model.add(Dense(1024, input_dim=100)) model.add(LeakyReLU()) model.add(Dense(128 * 7 * 7)) model.add(BatchNormalization()) model.add(LeakyReLU()) if K.image_data_format() == 'channels_first': model.add(Reshape((128, 7, 7), input_shape=(128 * 7 * 7,))) bn_axis = 1 else: model.add(Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))) bn_axis = -1 model.add(Conv2DTranspose(128, (5, 5), strides=2, padding='same')) model.add(BatchNormalization(axis=bn_axis)) model.add(LeakyReLU()) model.add(Convolution2D(64, (5, 5), padding='same')) model.add(BatchNormalization(axis=bn_axis)) model.add(LeakyReLU()) model.add(Conv2DTranspose(64, (5, 5), strides=2, padding='same')) model.add(BatchNormalization(axis=bn_axis)) model.add(LeakyReLU()) # Because we normalized training inputs to lie in the range [-1, 1], # the tanh function should be used for the output of the generator to ensure its output # also lies in this range. model.add(Convolution2D(1, (5, 5), padding='same', activation='tanh')) return model
def create_Kao_Onet( weight_path = 'model48.h5'): input = Input(shape = [48,48,3]) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1,2],name='prelu1')(x) x = MaxPool2D(pool_size=3, strides=2, padding='same')(x) x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1,2],name='prelu2')(x) x = MaxPool2D(pool_size=3, strides=2)(x) x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1,2],name='prelu3')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x) x = PReLU(shared_axes=[1,2],name='prelu4')(x) x = Permute((3,2,1))(x) x = Flatten()(x) x = Dense(256, name='conv5') (x) x = PReLU(name='prelu5')(x) classifier = Dense(2, activation='softmax',name='conv6-1')(x) bbox_regress = Dense(4,name='conv6-2')(x) landmark_regress = Dense(10,name='conv6-3')(x) model = Model([input], [classifier, bbox_regress, landmark_regress]) model.load_weights(weight_path, by_name=True) return model
def cnn_word_model(self): embed_input = Input(shape=(self.opt['max_sequence_length'], self.opt['embedding_dim'],)) outputs = [] for i in range(len(self.kernel_sizes)): output_i = Conv1D(self.opt['filters_cnn'], kernel_size=self.kernel_sizes[i], activation=None, kernel_regularizer=l2(self.opt['regul_coef_conv']), padding='same')(embed_input) output_i = BatchNormalization()(output_i) output_i = Activation('relu')(output_i) output_i = GlobalMaxPooling1D()(output_i) outputs.append(output_i) output = concatenate(outputs, axis=1) output = Dropout(rate=self.opt['dropout_rate'])(output) output = Dense(self.opt['dense_dim'], activation=None, kernel_regularizer=l2(self.opt['regul_coef_dense']))(output) output = BatchNormalization()(output) output = Activation('relu')(output) output = Dropout(rate=self.opt['dropout_rate'])(output) output = Dense(1, activation=None, kernel_regularizer=l2(self.opt['regul_coef_dense']))(output) output = BatchNormalization()(output) act_output = Activation('sigmoid')(output) model = Model(inputs=embed_input, outputs=act_output) return model
def build_encoder(self,input_shape): return [Reshape((*input_shape,1)), GaussianNoise(self.parameters['noise']), BN(), *[Convolution2D(self.parameters['clayer'],(3,3), activation=self.parameters['activation'],padding='same', use_bias=False), Dropout(self.parameters['dropout']), BN(), MaxPooling2D((2,2)),], *[Convolution2D(self.parameters['clayer'],(3,3), activation=self.parameters['activation'],padding='same', use_bias=False), Dropout(self.parameters['dropout']), BN(), MaxPooling2D((2,2)),], flatten, Sequential([ Dense(self.parameters['layer'], activation=self.parameters['activation'], use_bias=False), BN(), Dropout(self.parameters['dropout']), Dense(self.parameters['N']*self.parameters['M']), ])]
def model(data, hidden_layers, hidden_neurons, output_file, validation_split=0.9): train_n = int(validation_split * len(data)) batch_size = 50 train_data = data[:train_n,:] val_data = data[train_n:,:] input_sh = Input(shape=(data.shape[1],)) encoded = noise.GaussianNoise(0.2)(input_sh) for i in range(hidden_layers): encoded = Dense(hidden_neurons[i], activation='relu')(encoded) encoded = noise.GaussianNoise(0.2)(encoded) decoded = Dense(hidden_neurons[-2], activation='relu')(encoded) for j in range(hidden_layers-3,-1,-1): decoded = Dense(hidden_neurons[j], activation='relu')(decoded) decoded = Dense(data.shape[1], activation='sigmoid')(decoded) autoencoder = Model(input=input_sh, output=decoded) autoencoder.compile(optimizer='adadelta', loss='mse') checkpointer = ModelCheckpoint(filepath='data/bestmodel' + output_file + ".hdf5", verbose=1, save_best_only=True) earlystopper = EarlyStopping(monitor='val_loss', patience=15, verbose=1) train_generator = DataGenerator(batch_size) train_generator.fit(train_data, train_data) val_generator = DataGenerator(batch_size) val_generator.fit(val_data, val_data) autoencoder.fit_generator(train_generator, samples_per_epoch=len(train_data), nb_epoch=100, validation_data=val_generator, nb_val_samples=len(val_data), max_q_size=batch_size, callbacks=[checkpointer, earlystopper]) enco = Model(input=input_sh, output=encoded) enco.compile(optimizer='adadelta', loss='mse') reprsn = enco.predict(data) return reprsn
def __init__(self, input_shape, lr=0.01, n_layers=2, n_hidden=8, rate_dropout=0.2, loss='risk_estimation'): print("initializing..., learing rate %s, n_layers %s, n_hidden %s, dropout rate %s." %(lr, n_layers, n_hidden, rate_dropout)) self.model = Sequential() self.model.add(Dropout(rate=rate_dropout, input_shape=(input_shape[0], input_shape[1]))) for i in range(0, n_layers - 1): self.model.add(LSTM(n_hidden * 4, return_sequences=True, activation='tanh', recurrent_activation='hard_sigmoid', kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', dropout=rate_dropout, recurrent_dropout=rate_dropout)) self.model.add(LSTM(n_hidden, return_sequences=False, activation='tanh', recurrent_activation='hard_sigmoid', kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', dropout=rate_dropout, recurrent_dropout=rate_dropout)) self.model.add(Dense(1, kernel_initializer=initializers.glorot_uniform())) # self.model.add(BatchNormalization(axis=-1, moving_mean_initializer=Constant(value=0.5), # moving_variance_initializer=Constant(value=0.25))) self.model.add(BatchRenormalization(axis=-1, beta_init=Constant(value=0.5))) self.model.add(Activation('relu_limited')) opt = RMSprop(lr=lr) self.model.compile(loss=loss, optimizer=opt, metrics=['accuracy'])
def make_teacher_model(train_data, validation_data, nb_epoch=3): '''Train a simple CNN as teacher model. ''' model = Sequential() model.add(Conv2D(64, 3, 3, input_shape=input_shape, border_mode='same', name='conv1')) model.add(MaxPooling2D(name='pool1')) model.add(Conv2D(64, 3, 3, border_mode='same', name='conv2')) model.add(MaxPooling2D(name='pool2')) model.add(Flatten(name='flatten')) model.add(Dense(64, activation='relu', name='fc1')) model.add(Dense(nb_class, activation='softmax', name='fc2')) model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9), metrics=['accuracy']) train_x, train_y = train_data history = model.fit(train_x, train_y, nb_epoch=nb_epoch, validation_data=validation_data) return model, history
def train(self, dataset, train_split=0.8, dense_size=32, learning_rate=0.001, batch_size=32, epochs=50, activation='relu'): self.__load_dataset(dataset, train_split) train_x = np.array(self.__train_data[:, 0].tolist()) train_y = to_categorical(self.__train_data[:, 1], 2) test_x = np.array(self.__test_data[:, 0].tolist()) test_y = to_categorical(self.__test_data[:, 1], 2) print(train_x.shape) self.__model = Sequential() self.__model.add(Dense(dense_size, input_dim=train_x.shape[1], activation=activation, init='glorot_uniform')) self.__model.add(Dense(train_y.shape[1], activation='softmax', init='glorot_uniform')) self.__model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['categorical_accuracy']) self.__model.fit(train_x, train_y, batch_size=batch_size, nb_epoch=epochs, validation_data=(test_x, test_y), verbose=2)
def test(path_test, input_size, hidden_size, batch_size, save_dir, model_name, maxlen): db = read_data(path_test) X = create_sequences(db[:-maxlen], win_size=maxlen, step=maxlen) X = np.reshape(X, (X.shape[0], X.shape[1], input_size)) # build the model: 1 layer LSTM print('Build model...') model = Sequential() model.add(LSTM(hidden_size, return_sequences=False, input_shape=(maxlen, input_size))) model.add(Dense(maxlen)) model.load_weights(save_dir + model_name) model.compile(loss='mse', optimizer='adam') prediction = model.predict(X, batch_size, verbose=1) prediction = prediction.flatten() # prediction_container = np.array(prediction).flatten() Y = db[maxlen:] plt.plot(prediction, label='prediction') plt.plot(Y, label='true') plt.legend() plt.show()
def discriminator_model(): model = Sequential() model.add(Convolution2D(64,5,5, border_mode='same', input_shape=(1,28,28), dim_ordering="th")) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(2,2), dim_ordering="th")) model.add(Convolution2D(128,5,5, border_mode='same', dim_ordering="th")) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(2,2), dim_ordering="th")) model.add(Flatten()) model.add(Dense(1024)) model.add(Activation('tanh')) model.add(Dense(1)) model.add(Activation('sigmoid')) return model
def build_simpleCNN(input_shape = (32, 32, 3), num_output = 10): h, w, nch = input_shape assert h == w, 'expect input shape (h, w, nch), h == w' images = Input(shape = (h, h, nch)) x = Conv2D(64, (4, 4), strides = (1, 1), kernel_initializer = init, padding = 'same')(images) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPooling2D(pool_size = (2, 2))(x) x = Conv2D(128, (4, 4), strides = (1, 1), kernel_initializer = init, padding = 'same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPooling2D(pool_size = (2, 2))(x) x = Flatten()(x) outputs = Dense(num_output, kernel_initializer = init, activation = 'softmax')(x) model = Model(inputs = images, outputs = outputs) return model
def train_model(self): # scale scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(self.data) # split into train and test sets train_size = int(len(dataset) * 0.95) train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] look_back = 5 trainX, trainY = self.create_dataset(train, look_back) # reshape input to be [samples, time steps, features] trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) # create and fit the LSTM network model = Sequential() model.add(LSTM(6, input_dim=look_back)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, nb_epoch=100, batch_size=1, verbose=2) return model
def azureml_main(dataframe1 = None, dataframe2 = None): # Execution logic goes here # print('Input pandas.DataFrame #1:\r\n\r\n{0}'.format(dataframe1)) # If a zip file is connected to the third input port is connected, # it is unzipped under ".\Script Bundle". This directory is added # to sys.path. Therefore, if your zip file contains a Python file # mymodule.py you can import it using: # import mymodule model = Sequential() model.add(Dense(1, input_dim=784, activation="relu")) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) data = np.random.random((1000,784)) labels = np.random.randint(2, size=(1000,1)) model.fit(data, labels, nb_epoch=10, batch_size=32) model.evaluate(data, labels) return dataframe1,
def discriminator_model(): model = Sequential() model.add(Convolution2D( 64, 5, 5, border_mode='same', input_shape=(1, 28, 28))) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(128, 5, 5)) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(1024)) model.add(Activation('tanh')) model.add(Dense(1)) model.add(Activation('sigmoid')) return model
def create_model(self, rnn_layer): inputs = Input(shape=(self.max_length, self.feature_size)) masked_inputs = Masking(0.0)(inputs) outputs = RNNCell( recurrent_layer=rnn_layer( self.hidden_size, return_sequences=True ), dense_layer=Dense( units=self.encoding_size ), dense_dropout=0.1 )(masked_inputs) model = Model(inputs, outputs) model.compile('sgd', 'mean_squared_error') return model
def largeann(input_shape, n_classes, layers=3, neurons=2000, dropout=0.35 ): """ for working with extracted features """ # gpu = switch_gpu() # with K.tf.device('/gpu:{}'.format(gpu)): # K.set_session(K.tf.Session(config=K.tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))) model = Sequential(name='ann') # model.gpu = gpu for l in range(layers): model.add(Dense (neurons, input_shape=input_shape, activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(Dropout(dropout)) model.add(Dense(n_classes, activation = 'softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=[keras.metrics.categorical_accuracy]) return model #%% everyhing recurrent for ANN
def rcnn(input_shape, n_classes): """ Input size should be [batch, 1d, ch] = (XXX, 3000, 1) """ model = Sequential(name='RCNN test') model.add(Conv1D (kernel_size = (200), filters = 20, batch_input_shape=input_shape, activation='elu')) model.add(MaxPooling1D(pool_size = (20), strides=(10))) model.add(Conv1D (kernel_size = (20), filters = 200, activation='elu')) model.add(MaxPooling1D(pool_size = (10), strides=(3))) model.add(Conv1D (kernel_size = (20), filters = 200, activation='elu')) model.add(MaxPooling1D(pool_size = (10), strides=(3))) model.add(Dense (512, activation='elu')) model.add(Dense (512, activation='elu')) model.add(Reshape((1,model.output_shape[1]))) model.add(LSTM(256, stateful=True, return_sequences=False)) model.add(Dropout(0.3)) model.add(Dense(n_classes, activation = 'sigmoid')) model.compile(loss='categorical_crossentropy', optimizer=Adadelta()) return model
def rnn_old(input_shape, n_classes): """ Input size should be [batch, 1d, 2d, ch] = (None, 1, 15000, 1) """ model = Sequential(name='Simple 1D CNN') model.add(keras.layers.LSTM(50, stateful=True, batch_input_shape=input_shape, return_sequences=False)) model.add(Dense(n_classes, activation='sigmoid')) print(model.output_shape) model.compile(loss='categorical_crossentropy', optimizer=Adadelta(), metrics=[keras.metrics.categorical_accuracy]) return model #%% old models
def create_Kao_Rnet (weight_path = 'model24.h5'): input = Input(shape=[24, 24, 3]) # change this shape to [None,None,3] to enable arbitraty shape input x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1, 2], name='prelu1')(x) x = MaxPool2D(pool_size=3,strides=2, padding='same')(x) x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1, 2], name='prelu2')(x) x = MaxPool2D(pool_size=3, strides=2)(x) x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1, 2], name='prelu3')(x) x = Permute((3, 2, 1))(x) x = Flatten()(x) x = Dense(128, name='conv4')(x) x = PReLU( name='prelu4')(x) classifier = Dense(2, activation='softmax', name='conv5-1')(x) bbox_regress = Dense(4, name='conv5-2')(x) model = Model([input], [classifier, bbox_regress]) model.load_weights(weight_path, by_name=True) return model
def HAN1(MAX_NB_WORDS, MAX_WORDS, MAX_SENTS, EMBEDDING_DIM, WORDGRU, embedding_matrix, DROPOUTPER): #model = Sequential() wordInputs = Input(shape=(MAX_WORDS,), name='word1', dtype='float32') wordEmbedding = Embedding(MAX_NB_WORDS, EMBEDDING_DIM, weights=[embedding_matrix], mask_zero=True, trainable=True, name='emb1')(wordInputs) #Assuming all the sentences have same number of words. Check for input_length again. hij = Bidirectional(GRU(WORDGRU, name='gru1', return_sequences=True))(wordEmbedding) wordDrop = Dropout(DROPOUTPER, name='drop1')(hij) alpha_its, Si = AttentionLayer(name='att1')(wordDrop) v6 = Dense(1, activation="sigmoid", name="dense")(Si) #model.add(Dense(1, activation="sigmoid", name="documentOut3")) model = Model(inputs=[wordInputs] , outputs=[v6]) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model
def fGRU_avg(MAX_NB_WORDS, MAX_WORDS, MAX_SENTS, EMBEDDING_DIM, WORDGRU, embedding_matrix, DROPOUTPER): wordInputs = Input(shape=(MAX_SENTS+1, MAX_WORDS), name="wordInputs", dtype='float32') wordInp = Flatten()(wordInputs) wordEmbedding = Embedding(MAX_NB_WORDS, EMBEDDING_DIM, weights=[embedding_matrix], mask_zero=False, trainable=True, name='wordEmbedding')(wordInp) hij = Bidirectional(GRU(WORDGRU, return_sequences=True), name='gru1')(wordEmbedding) head = GlobalAveragePooling1D()(hij) v6 = Dense(1, activation="sigmoid", name="dense")(head) model = Model(inputs=[wordInputs] , outputs=[v6]) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model
def fGlove_avg(MAX_NB_WORDS, MAX_WORDS, MAX_SENTS, EMBEDDING_DIM, WORDGRU, embedding_matrix, DROPOUTPER): wordInputs = Input(shape=(MAX_SENTS+1, MAX_WORDS), name="wordInputs", dtype='float32') wordInp = Flatten()(wordInputs) wordEmbedding = Embedding(MAX_NB_WORDS, EMBEDDING_DIM, weights=[embedding_matrix], mask_zero=False, trainable=True, name='wordEmbedding')(wordInp) head = GlobalAveragePooling1D()(wordEmbedding) v6 = Dense(1, activation="sigmoid", name="dense")(head) model = Model(inputs=[wordInputs] , outputs=[v6]) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model
def lstm_word_model(self): embed_input = Input(shape=(self.opt['max_sequence_length'], self.opt['embedding_dim'],)) output = Bidirectional(LSTM(self.opt['units_lstm'], activation='tanh', kernel_regularizer=l2(self.opt['regul_coef_lstm']), dropout=self.opt['dropout_rate']))(embed_input) output = Dropout(rate=self.opt['dropout_rate'])(output) output = Dense(self.opt['dense_dim'], activation=None, kernel_regularizer=l2(self.opt['regul_coef_dense']))(output) output = BatchNormalization()(output) output = Activation('relu')(output) output = Dropout(rate=self.opt['dropout_rate'])(output) output = Dense(1, activation=None, kernel_regularizer=l2(self.opt['regul_coef_dense']))(output) output = BatchNormalization()(output) act_output = Activation('sigmoid')(output) model = Model(inputs=embed_input, outputs=act_output) return model
def answer_start_pred(context_encoding, question_attention_vector, context_mask, W, dropout_rate): """Answer start prediction layer.""" answer_start = Lambda(lambda arg: concatenate([arg[0], arg[1], arg[2]]))([ context_encoding, question_attention_vector, multiply([context_encoding, question_attention_vector])]) answer_start = TimeDistributed(Dense(W, activation='relu'))(answer_start) answer_start = Dropout(rate=dropout_rate)(answer_start) answer_start = TimeDistributed(Dense(1))(answer_start) # apply masking answer_start = Lambda(lambda q: masked_softmax(q[0], q[1]))([answer_start, context_mask]) answer_start = Lambda(lambda q: flatten(q))(answer_start) return answer_start
def create_attention_layer(self, input_dim_a, input_dim_b): """Create an attention layer of a model.""" inp_a = Input(shape=(input_dim_a, self.hidden_dim,)) inp_b = Input(shape=(input_dim_b, self.hidden_dim,)) val = np.concatenate((np.zeros((self.max_sequence_length-1,1)), np.ones((1,1))), axis=0) kcon = K.constant(value=val, dtype='float32') inp_b_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(inp_b) last_state = Lambda(lambda x: K.permute_dimensions(K.dot(x, kcon), (0,2,1)))(inp_b_perm) ker_in = glorot_uniform(seed=self.seed) outp_a = Dense(self.attention_dim, input_shape=(input_dim_a, self.hidden_dim), kernel_initializer=ker_in, activation='relu')(inp_a) outp_last = Dense(self.attention_dim, input_shape=(1, self.hidden_dim), kernel_initializer=ker_in, activation='relu')(last_state) outp_last_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(outp_last) outp = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[1, 2]))([outp_last_perm, outp_a]) outp_norm = Activation('softmax')(outp) outp_norm_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(outp_norm) model = Model(inputs=[inp_a, inp_b], outputs=outp_norm_perm, name="attention_generator") return model
def create_attention_layer_f(self, input_dim_a, input_dim_b): """Create an attention layer of a model.""" inp_a = Input(shape=(input_dim_a, self.hidden_dim,)) inp_b = Input(shape=(input_dim_b, self.hidden_dim,)) val = np.concatenate((np.zeros((self.max_sequence_length-1,1)), np.ones((1,1))), axis=0) kcon = K.constant(value=val, dtype='float32') inp_b_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(inp_b) last_state = Lambda(lambda x: K.permute_dimensions(K.dot(x, kcon), (0,2,1)))(inp_b_perm) ker_in = glorot_uniform(seed=self.seed) outp_a = Dense(self.attention_dim, input_shape=(input_dim_a, self.hidden_dim), kernel_initializer=ker_in, activation='relu')(inp_a) outp_last = Dense(self.attention_dim, input_shape=(1, self.hidden_dim), kernel_initializer=ker_in, activation='relu')(last_state) outp_last_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(outp_last) outp = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[1, 2]))([outp_last_perm, outp_a]) outp_norm = Activation('softmax')(outp) outp_norm_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(outp_norm) model = Model(inputs=[inp_a, inp_b], outputs=outp_norm_perm, name="att_generator_forw") return model
def create_attention_layer_b(self, input_dim_a, input_dim_b): """Create an attention layer of a model.""" inp_a = Input(shape=(input_dim_a, self.hidden_dim,)) inp_b = Input(shape=(input_dim_b, self.hidden_dim,)) val = np.concatenate((np.ones((1,1)), np.zeros((self.max_sequence_length-1,1))), axis=0) kcon = K.constant(value=val, dtype='float32') inp_b_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(inp_b) last_state = Lambda(lambda x: K.permute_dimensions(K.dot(x, kcon), (0,2,1)))(inp_b_perm) ker_in = glorot_uniform(seed=self.seed) outp_a = Dense(self.attention_dim, input_shape=(input_dim_a, self.hidden_dim), kernel_initializer=ker_in, activation='relu')(inp_a) outp_last = Dense(self.attention_dim, input_shape=(1, self.hidden_dim), kernel_initializer=ker_in, activation='relu')(last_state) outp_last_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(outp_last) outp = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[1, 2]))([outp_last_perm, outp_a]) outp_norm = Activation('softmax')(outp) outp_norm_perm = Lambda(lambda x: K.permute_dimensions(x, (0,2,1)))(outp_norm) model = Model(inputs=[inp_a, inp_b], outputs=outp_norm_perm, name="att_generator_back") return model
def classifier(base_layers, input_rois, batch_size, nb_classes = 3, trainable=False): # compile times tend to be very high, so we use smaller ROI pooling regions to workaround if K.backend() == 'tensorflow': pooling_regions = 14 input_shape = (batch_size,14,14,2048) elif K.backend() == 'theano': pooling_regions = 7 input_shape = (batch_size,2048,7,7) out_roi_pool = RoiPoolingConv(pooling_regions, batch_size)([base_layers, input_rois]) out = TimeDistributed(Flatten())(out_roi_pool) # out = TimeDistributed(Dropout(0.4))(out) # out = TimeDistributed(Dense(2048,activation='relu'))(out) out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out) # note: no regression target for bg class out_regr = TimeDistributed(Dense(4 * nb_classes, activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out) return [out_class, out_regr]
def classifier(base_layers, input_rois, batch_size, nb_classes = 3, trainable=False): # compile times tend to be very high, so we use smaller ROI pooling regions to workaround if K.backend() == 'tensorflow': pooling_regions = 14 input_shape = (batch_size,14,14,512) elif K.backend() == 'theano': pooling_regions = 7 input_shape = (batch_size,512,7,7) out_roi_pool = RoiPoolingConv(pooling_regions, batch_size)([base_layers, input_rois]) out = TimeDistributed(Flatten())(out_roi_pool) out = TimeDistributed(Dense(4096,activation='relu'))(out) out = TimeDistributed(Dropout(0.5))(out) out = TimeDistributed(Dense(4096,activation='relu'))(out) out = TimeDistributed(Dropout(0.5))(out) out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out) # note: no regression target for bg class out_regr = TimeDistributed(Dense(4 * nb_classes, activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out) return [out_class, out_regr]
def classifier(base_layers, input_rois, batch_size, nb_classes = 3, trainable=False): # compile times tend to be very high, so we use smaller ROI pooling regions to workaround if K.backend() == 'tensorflow': pooling_regions = 14 input_shape = (batch_size,14,14,1024) elif K.backend() == 'theano': pooling_regions = 7 input_shape = (batch_size,1024,7,7) out_roi_pool = RoiPoolingConv(pooling_regions, batch_size)([base_layers, input_rois]) out = TimeDistributed(Flatten())(out_roi_pool) out = TimeDistributed(Dense(4096,activation='relu'))(out) out = TimeDistributed(Dropout(0.5))(out) out = TimeDistributed(Dense(4096,activation='relu'))(out) out = TimeDistributed(Dropout(0.5))(out) out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out) # note: no regression target for bg class out_regr = TimeDistributed(Dense(4 * nb_classes, activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out) return [out_class, out_regr]
def __init__(self, n_classes, vocab_size, max_len, num_units=128, useBiDirection=False, useAttention=False, learning_rate=0.001, dropout=0, embedding_size=300): self.model = Sequential() self.model.add(Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_len)) lstm_model = LSTM(num_units, dropout=dropout) if useBiDirection: lstm_model = Bidirectional(lstm_model) if useAttention: lstm_model = lstm_model print("Attention not implement yet ... ") self.model.add(lstm_model) self.model.add(Dense(n_classes, activation='softmax')) self.model.summary() self.model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
def build_mod5(opt=adam()): n = 3 * 1024 in1 = Input((128,), name='x1') x1 = fc_block1(in1, n) x1 = fc_identity(x1, n) in2 = Input((1024,), name='x2') x2 = fc_block1(in2, n) x2 = fc_identity(x2, n) x = merge([x1, x2], mode='concat', concat_axis=1) x = fc_identity(x, n) out = Dense(4716, activation='sigmoid', name='output')(x) model = Model(input=[in1, in2], output=out) model.compile(optimizer=opt, loss='categorical_crossentropy') # model.summary() # plot(model=model, show_shapes=True) return model
def regression(X, Y, epochs, reg_mode): x, y = np.array(X),np.array(Y) model = Sequential() if reg_mode == 'linear': model.add(Dense(1, input_dim=x.shape[1])) model.compile(optimizer='rmsprop', metrics=['accuracy'], loss='mse') elif reg_mode == 'logistic': model.add(Dense(1, activation='sigmoid', input_dim=x.shape[1])) model.compile(optimizer='rmsprop', metrics=['accuracy'], loss='binary_crossentropy') elif reg_mode == 'regularized': reg = l1_l2(l1=0.01, l2=0.01) model.add(Dense(1, activation='sigmoid', W_regularizer=reg, input_dim=x.shape[1])) model.compile(optimizer='rmsprop', metrics=['accuracy'], loss='binary_crossentropy') out = model.fit(x, y, nb_epoch=epochs, verbose=0, validation_split=.33) return model, out
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False): # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround if K.backend() == 'tensorflow': pooling_regions = 7 input_shape = (num_rois,7,7,512) elif K.backend() == 'theano': pooling_regions = 7 input_shape = (num_rois,512,7,7) out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois]) out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool) out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out) out = TimeDistributed(Dropout(0.5))(out) out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out) out = TimeDistributed(Dropout(0.5))(out) out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out) # note: no regression target for bg class out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out) return [out_class, out_regr]
def build_model(look_back: int, batch_size: int=1) -> Sequential: """ The function builds a keras Sequential model :param look_back: number of previous time steps as int :param batch_size: batch_size as int, defaults to 1 :return: keras Sequential model """ model = Sequential() model.add(LSTM(64, activation='relu', batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=False)) model.add(Dense(1, activation='linear')) model.compile(loss='mean_squared_error', optimizer='adam') return model
def build_encoder(self,input_shape): return [GaussianNoise(self.parameters['noise']), BN(), Dense(self.parameters['layer'], activation='relu', use_bias=False), BN(), Dropout(self.parameters['dropout']), Dense(self.parameters['layer'], activation='relu', use_bias=False), BN(), Dropout(self.parameters['dropout']), Dense(self.parameters['layer'], activation='relu', use_bias=False), BN(), Dropout(self.parameters['dropout']), Dense(self.parameters['N']*self.parameters['M']),]
def _build(self,input_shape): x = Input(shape=input_shape) N = input_shape[0] // 2 y = Sequential([ flatten, *[Sequential([BN(), Dense(self.parameters['layer'],activation=self.parameters['activation']), Dropout(self.parameters['dropout']),]) for i in range(self.parameters['num_layers']) ], Dense(1,activation="sigmoid") ])(x) self.loss = bce self.net = Model(x, y) # self.callbacks.append(self.linear_schedule([0.2,0.5], 0.1)) self.callbacks.append(GradientEarlyStopping(verbose=1,epoch=50,min_grad=self.parameters['min_grad'])) # self.custom_log_functions['lr'] = lambda: K.get_value(self.net.optimizer.lr)
def create_actor_network(self, state_size, action_dim): """Create actor network.""" print ("[MESSAGE] Build actor network.""") S = Input(shape=state_size) h_0 = Conv2D(32, (3, 3), padding="same", kernel_regularizer=l2(0.0001), activation="relu")(S) h_1 = Conv2D(32, (3, 3), padding="same", kernel_regularizer=l2(0.0001), activation="relu")(h_0) h_1 = AveragePooling2D(2, 2)(h_1) h_1 = Flatten()(h_1) h_1 = Dense(600, activation="relu")(h_1) A = Dense(action_dim, activation="softmax")(h_1) model = Model(inputs=S, outputs=A) return model, model.trainable_weights, S
def _buildEncoder(self, x, latent_rep_size, max_length, epsilon_std = 0.01): h = Convolution1D(9, 9, activation = 'relu', name='conv_1')(x) h = Convolution1D(9, 9, activation = 'relu', name='conv_2')(h) h = Convolution1D(10, 11, activation = 'relu', name='conv_3')(h) h = Flatten(name='flatten_1')(h) h = Dense(435, activation = 'relu', name='dense_1')(h) def sampling(args): z_mean_, z_log_var_ = args batch_size = K.shape(z_mean_)[0] epsilon = K.random_normal(shape=(batch_size, latent_rep_size), mean=0., std = epsilon_std) return z_mean_ + K.exp(z_log_var_ / 2) * epsilon z_mean = Dense(latent_rep_size, name='z_mean', activation = 'linear')(h) z_log_var = Dense(latent_rep_size, name='z_log_var', activation = 'linear')(h) def vae_loss(x, x_decoded_mean): x = K.flatten(x) x_decoded_mean = K.flatten(x_decoded_mean) xent_loss = max_length * objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis = -1) return xent_loss + kl_loss return (vae_loss, Lambda(sampling, output_shape=(latent_rep_size,), name='lambda')([z_mean, z_log_var]))
def model_fn(input_dim, labels_dim, hidden_units=[100, 70, 50, 20], learning_rate=0.1): """Create a Keras Sequential model with layers.""" model = models.Sequential() for units in hidden_units: model.add(layers.Dense(units=units, input_dim=input_dim, activation=relu)) input_dim = units # Add a dense final layer with sigmoid function model.add(layers.Dense(labels_dim, activation=sigmoid)) compile_model(model, learning_rate) return model
def test_trainable_argument(): x = np.random.random((5, 3)) y = np.random.random((5, 2)) model = Sequential() model.add(Dense(2, input_dim=3, trainable=False)) model.compile('rmsprop', 'mse') out = model.predict(x) model.train_on_batch(x, y) out_2 = model.predict(x) assert_allclose(out, out_2) # test with nesting input = Input(shape=(3,)) output = model(input) model = Model(input, output) model.compile('rmsprop', 'mse') out = model.predict(x) model.train_on_batch(x, y) out_2 = model.predict(x) assert_allclose(out, out_2)
def test_sequential_model_saving_2(): # test with custom optimizer, loss custom_opt = optimizers.rmsprop custom_loss = objectives.mse model = Sequential() model.add(Dense(2, input_dim=3)) model.add(Dense(3)) model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc']) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'custom_opt': custom_opt, 'custom_loss': custom_loss}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
def test_fuctional_model_saving(): input = Input(shape=(3,)) x = Dense(2)(input) output = Dense(3)(x) model = Model(input, output) model.compile(loss=objectives.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
def create_BiLSTM(wordvecs, lstm_dim=300, output_dim=2, dropout=.5, weights=None, train=True): model = Sequential() if weights != None: model.add(Embedding(len(wordvecs)+1, len(wordvecs['the']), weights=[weights], trainable=train)) else: model.add(Embedding(len(wordvecs)+1, len(wordvecs['the']), trainable=train)) model.add(Dropout(dropout)) model.add(Bidirectional(LSTM(lstm_dim))) model.add(Dropout(dropout)) model.add(Dense(output_dim, activation='softmax')) if output_dim == 2: model.compile('adam', 'binary_crossentropy', metrics=['accuracy']) else: model.compile('adam', 'categorical_crossentropy', metrics=['accuracy']) return model
def reactionrnn_model(weights_path, num_classes, maxlen=140): ''' Builds the model architecture for textgenrnn and loads the pretrained weights for the model. ''' input = Input(shape=(maxlen,), name='input') embedded = Embedding(num_classes, 100, input_length=maxlen, name='embedding')(input) rnn = GRU(256, return_sequences=False, name='rnn')(embedded) output = Dense(5, name='output', activation=lambda x: K.relu(x) / K.sum(K.relu(x), axis=-1))(rnn) model = Model(inputs=[input], outputs=[output]) model.load_weights(weights_path, by_name=True) model.compile(loss='mse', optimizer='nadam') return model
def make_discriminator(): """Creates a discriminator model that takes an image as input and outputs a single value, representing whether the input is real or generated. Unlike normal GANs, the output is not sigmoid and does not represent a probability! Instead, the output should be as large and negative as possible for generated inputs and as large and positive as possible for real inputs. Note that the improved WGAN paper suggests that BatchNormalization should not be used in the discriminator.""" model = Sequential() if K.image_data_format() == 'channels_first': model.add(Convolution2D(64, (5, 5), padding='same', input_shape=(1, 28, 28))) else: model.add(Convolution2D(64, (5, 5), padding='same', input_shape=(28, 28, 1))) model.add(LeakyReLU()) model.add(Convolution2D(128, (5, 5), kernel_initializer='he_normal', strides=[2, 2])) model.add(LeakyReLU()) model.add(Convolution2D(128, (5, 5), kernel_initializer='he_normal', padding='same', strides=[2, 2])) model.add(LeakyReLU()) model.add(Flatten()) model.add(Dense(1024, kernel_initializer='he_normal')) model.add(LeakyReLU()) model.add(Dense(1, kernel_initializer='he_normal')) return model
def model_cnn(net_layers, input_shape): inp = Input(shape=input_shape) model = inp for cl in net_layers['conv_layers']: model = Conv2D(filters=cl[0], kernel_size=cl[1], activation='relu')(model) if cl[4]: model = MaxPooling2D()(model) if cl[2]: model = BatchNormalization()(model) if cl[3]: model = Dropout(0.2)(model) model = Flatten()(model) for dl in net_layers['dense_layers']: model = Dense(dl[0])(model) model = Activation('relu')(model) if dl[1]: model = BatchNormalization()(model) if dl[2]: model = Dropout(0.2)(model) model = Dense(1)(model) model = Activation('sigmoid')(model) model = Model(inp, model) return model # %% # LSTM architecture # conv_layers -> [(filters, kernel_size, BatchNormaliztion, Dropout, MaxPooling)] # dense_layers -> [(num_neurons, BatchNormaliztion, Dropout)]
def model_lstm(input_shape): inp = Input(shape=input_shape) model = inp if input_shape[0] > 2: model = Conv1D(filters=24, kernel_size=(3), activation='relu')(model) # if input_shape[0] > 0: model = TimeDistributed(Conv1D(filters=24, kernel_size=3, activation='relu'))(model) model = LSTM(16)(model) model = Activation('relu')(model) model = Dropout(0.2)(model) model = Dense(16)(model) model = Activation('relu')(model) model = BatchNormalization()(model) model = Dense(1)(model) model = Activation('sigmoid')(model) model = Model(inp, model) return model # %% # Conv-1D architecture. Just one sample as input
def test(path_test, input_size, hidden_size, batch_size, save_dir, model_name, maxlen): db = read_data(path_test) X = create_sequences(db, maxlen, maxlen) y = create_sequences(db, maxlen, maxlen) X = np.reshape(X, (X.shape[0], X.shape[1], 1)) y = np.reshape(y, (y.shape[0], y.shape[1], 1)) # build the model: 1 layer LSTM print('Build model...') model = Sequential() # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE # note: in a situation where your input sequences have a variable length, # use input_shape=(None, nb_feature). model.add(LSTM(hidden_size, input_shape=(maxlen, input_size))) # For the decoder's input, we repeat the encoded input for each time step model.add(RepeatVector(maxlen)) # The decoder RNN could be multiple layers stacked or a single layer model.add(LSTM(hidden_size, return_sequences=True)) # For each of step of the output sequence, decide which character should be chosen model.add(TimeDistributed(Dense(1))) model.load_weights(save_dir + model_name) model.compile(loss='mae', optimizer='adam') model.summary() prediction = model.predict(X, batch_size, verbose=1, ) prediction = prediction.flatten() # prediction_container = np.array(prediction).flatten() plt.plot(prediction.flatten()[:4000], label='prediction') plt.plot(y.flatten()[maxlen:4000 + maxlen], label='true') plt.legend() plt.show() store_prediction_and_ground_truth(model)