Python keras.layers 模块,Conv1D() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用keras.layers.Conv1D()

项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def tsinalis(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 1, 15000, 1)
    """
    model = Sequential(name='Tsinalis')
    model.add(Conv1D (kernel_size = (200), filters = 20, input_shape=input_shape, activation='relu'))
    print(model.input_shape)
    print(model.output_shape)
    model.add(MaxPooling1D(pool_size = (20), strides=(10)))
    print(model.output_shape)
    model.add(keras.layers.core.Reshape([20,-1,1]))
    print(model.output_shape)    
    model.add(Conv2D (kernel_size = (20,30), filters = 400, activation='relu'))
    print(model.output_shape)
    model.add(MaxPooling2D(pool_size = (1,10), strides=(1,2)))
    print(model.output_shape)
    model.add(Flatten())
    print(model.output_shape)
    model.add(Dense (500, activation='relu'))
    model.add(Dense (500, activation='relu'))
    model.add(Dense(n_classes, activation = 'softmax',activity_regularizer=keras.regularizers.l2()  ))
    model.compile( loss='categorical_crossentropy', optimizer=keras.optimizers.SGD(), metrics=[keras.metrics.categorical_accuracy])
    return model
项目:keras_detect_tool_wear    作者:kidozh    | 项目源码 | 文件源码
def first_block(tensor_input,filters,kernel_size=3,pooling_size=1,dropout=0.5):
    k1,k2 = filters

    out = Conv1D(k1,1,padding='same')(tensor_input)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dropout(dropout)(out)
    out = Conv1D(k2,kernel_size,padding='same')(out)


    pooling = MaxPooling1D(pooling_size,padding='same')(tensor_input)


    # out = merge([out,pooling],mode='sum')
    out = add([out,pooling])
    return out
项目:Fabrik    作者:Cloud-CV    | 项目源码 | 文件源码
def test_keras_import(self):
        # Pad 1D
        model = Sequential()
        model.add(ZeroPadding1D(2, input_shape=(224, 3)))
        model.add(Conv1D(32, 7, strides=2))
        model.build()
        self.pad_test(model, 'pad_w', 2)
        # Pad 2D
        model = Sequential()
        model.add(ZeroPadding2D(2, input_shape=(224, 224, 3)))
        model.add(Conv2D(32, 7, strides=2))
        model.build()
        self.pad_test(model, 'pad_w', 2)
        # Pad 3D
        model = Sequential()
        model.add(ZeroPadding3D(2, input_shape=(224, 224, 224, 3)))
        model.add(Conv3D(32, 7, strides=2))
        model.build()
        self.pad_test(model, 'pad_w', 2)


# ********** Export json tests **********

# ********** Data Layers Test **********
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def rcnn(input_shape, n_classes):
    """
    Input size should be [batch, 1d, ch] = (XXX, 3000, 1)
    """
    model = Sequential(name='RCNN test')
    model.add(Conv1D (kernel_size = (200), filters = 20, batch_input_shape=input_shape, activation='elu'))
    model.add(MaxPooling1D(pool_size = (20), strides=(10)))
    model.add(Conv1D (kernel_size = (20), filters = 200, activation='elu'))
    model.add(MaxPooling1D(pool_size = (10), strides=(3)))
    model.add(Conv1D (kernel_size = (20), filters = 200, activation='elu'))
    model.add(MaxPooling1D(pool_size = (10), strides=(3)))
    model.add(Dense (512, activation='elu'))
    model.add(Dense (512, activation='elu'))
    model.add(Reshape((1,model.output_shape[1])))
    model.add(LSTM(256, stateful=True, return_sequences=False))
    model.add(Dropout(0.3))
    model.add(Dense(n_classes, activation = 'sigmoid'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
项目:keras_detect_tool_wear    作者:kidozh    | 项目源码 | 文件源码
def repeated_block(x,filters,kernel_size=3,pooling_size=1,dropout=0.5):

    k1,k2 = filters


    out = BatchNormalization()(x)
    out = Activation('relu')(out)
    out = Conv1D(k1,kernel_size,strides=2,padding='same')(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dropout(dropout)(out)
    out = Conv1D(k2,kernel_size,strides=2,padding='same')(out)


    pooling = MaxPooling1D(pooling_size,strides=4,padding='same')(x)

    out = add([out, pooling])

    #out = merge([out,pooling])
    return out
项目:youarespecial    作者:endgameinc    | 项目源码 | 文件源码
def ResidualBlock1D_helper(layers, kernel_size, filters, final_stride=1):
    def f(_input):
        basic = _input
        for ln in range(layers):
            #basic = BatchNormalization()( basic ) # triggers known keras bug w/ TimeDistributed: https://github.com/fchollet/keras/issues/5221
            basic = ELU()(basic)  
            basic = Conv1D(filters, kernel_size, kernel_initializer='he_normal',
                           kernel_regularizer=l2(1.e-4), padding='same')(basic)

        # note that this strides without averaging
        return AveragePooling1D(pool_size=1, strides=final_stride)(Add()([_input, basic]))

    return f
项目:keras-surgeon    作者:BenWhetton    | 项目源码 | 文件源码
def layer_test_helper_1d_global(layer, channel_index):
    # This should test that the output is the correct shape so it should pass
    # into a Dense layer rather than a Conv layer.
    # The weighted layer is the previous layer,
    # Create model
    main_input = Input(shape=list(random.randint(10, 20, size=2)))
    x = Conv1D(3, 3)(main_input)
    x = layer(x)
    main_output = Dense(5)(x)
    model = Model(inputs=main_input, outputs=main_output)

    # Delete channels
    del_layer_index = 1
    next_layer_index = 3
    del_layer = model.layers[del_layer_index]
    new_model = operations.delete_channels(model, del_layer, channel_index)
    new_w = new_model.layers[next_layer_index].get_weights()

    # Calculate next layer's correct weights
    channel_count = getattr(del_layer, utils.get_channels_attr(del_layer))
    channel_index = [i % channel_count for i in channel_index]
    correct_w = model.layers[next_layer_index].get_weights()
    correct_w[0] = np.delete(correct_w[0], channel_index, axis=0)

    assert weights_equal(correct_w, new_w)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_conv1d_lstm(self):
        from keras.layers import Conv1D, LSTM, Dense
        model = Sequential()
        # input_shape = (time_step, dimensions)
        model.add(Conv1D(32,3,padding='same',input_shape=(10,8)))
        # conv1d output shape = (None, 10, 32)
        model.add(LSTM(24))
        model.add(Dense(1, activation='sigmoid'))

        input_names = ['input']
        output_names = ['output']
        spec = keras.convert(model, input_names, output_names).get_spec()

        self.assertIsNotNone(spec)
        self.assertTrue(spec.HasField('neuralNetwork'))

        # Test the inputs and outputs
        self.assertEquals(len(spec.description.input), len(input_names) + 2)
        self.assertEquals(len(spec.description.output), len(output_names) + 2)

        # Test the layer parameters.
        layers = spec.neuralNetwork.layers
        self.assertIsNotNone(layers[0].convolution)
        self.assertIsNotNone(layers[1].simpleRecurrent)
        self.assertIsNotNone(layers[2].innerProduct)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_tiny_conv1d_dilated_random(self):
        np.random.seed(1988)
        input_shape = (20, 1)
        num_kernels = 2
        filter_length = 3

        # Define a model
        model = Sequential()
        model.add(Conv1D(num_kernels, kernel_size = filter_length, padding = 'valid',
            input_shape = input_shape, dilation_rate = 3))

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_keras_model(model)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_tiny_conv_upsample_1d_random(self):
        np.random.seed(1988)
        input_dim = 2
        input_length = 10
        filter_length = 3
        nb_filters = 4
        model = Sequential()
        model.add(Conv1D(nb_filters, kernel_size = filter_length, padding='same',
            input_shape=(input_length, input_dim)))
        model.add(UpSampling1D(size = 2))

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_keras_model(model)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_tiny_conv_crop_1d_random(self, model_precision=_MLMODEL_FULL_PRECISION):
        np.random.seed(1988)
        input_dim = 2
        input_length = 10
        filter_length = 3
        nb_filters = 4
        model = Sequential()
        model.add(Conv1D(nb_filters, kernel_size = filter_length, padding='same',
            input_shape=(input_length, input_dim)))
        model.add(Cropping1D(cropping = 2))

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_keras_model(model, model_precision=model_precision)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_tiny_conv_pad_1d_random(self, model_precision=_MLMODEL_FULL_PRECISION):
        np.random.seed(1988)
        input_dim = 2
        input_length = 10
        filter_length = 3
        nb_filters = 4
        model = Sequential()
        model.add(Conv1D(nb_filters, kernel_size = filter_length, padding='same',
            input_shape=(input_length, input_dim)))
        model.add(ZeroPadding1D(padding = 2))

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_keras_model(model, model_precision=model_precision)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(self.l1_decay, self.l2_decay)
        x = kl.Conv1D(128, 11,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        x = kl.Flatten()(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Dense(self.nb_hidden,
                     kernel_initializer=self.init,
                     kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(128, 11,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(256, 7,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        gru = kl.recurrent.GRU(256, kernel_regularizer=kernel_regularizer)
        x = kl.Bidirectional(gru)(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkLarge(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def netSigmoid(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputDim, inputLength):
        baseNetwork = Sequential()
        baseNetwork.add(Embedding(input_dim=inputDim, output_dim=inputDim, input_length=inputLength))
        baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Flatten())
        baseNetwork.add(Dense(1024, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        baseNetwork.add(Dense(1024, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkLarge(inputDim, inputLength):
        baseNetwork = Sequential()
        baseNetwork.add(Embedding(input_dim=inputDim, output_dim=inputDim, input_length=inputLength))
        baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Flatten())
        baseNetwork.add(Dense(2048, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        baseNetwork.add(Dense(2048, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        return baseNetwork
项目:kaggle-quora-question-pairs    作者:voletiv    | 项目源码 | 文件源码
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    return baseNetwork
项目:gym-forex    作者:harveybc    | 项目源码 | 文件源码
def _build_model(self):
        # Deep Conv Neural Net for Deep-Q learning Model
        model = Sequential()
        model.add(Conv1D(128, 3, input_shape=(19,48)))
        model.add(Activation('relu'))
        model.add(MaxPooling1D(pool_size=2))

        model.add(Conv1D(64, 3))
        model.add(Activation('relu'))
        model.add(MaxPooling1D(pool_size=2))

        model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors
        model.add(Dense(64))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))
        model.add(Dense(self.action_size))
        model.add(Activation('sigmoid'))

        model.compile(loss=self._huber_loss,
                      optimizer=Adam(lr=self.learning_rate))
        #model.compile(loss='binary_crossentropy',
        #              optimizer='rmsprop',
        #              metrics=['accuracy'])

        return model
项目:char-models    作者:offbit    | 项目源码 | 文件源码
def char_block(in_layer, nb_filter=(64, 100), filter_length=(3, 3), subsample=(2, 1), pool_length=(2, 2)):
    block = in_layer
    for i in range(len(nb_filter)):

        block = Conv1D(filters=nb_filter[i],
                       kernel_size=filter_length[i],
                       padding='valid',
                       activation='tanh',
                       strides=subsample[i])(block)

        # block = BatchNormalization()(block)
        # block = Dropout(0.1)(block)
        if pool_length[i]:
            block = MaxPooling1D(pool_size=pool_length[i])(block)

    # block = Lambda(max_1d, output_shape=(nb_filter[-1],))(block)
    block = GlobalMaxPool1D()(block)
    block = Dense(128, activation='relu')(block)
    return block
项目:subtitle-synchronization    作者:AlbertoSabater    | 项目源码 | 文件源码
def model_lstm(input_shape):

    inp = Input(shape=input_shape)
    model = inp

    if input_shape[0] > 2: model = Conv1D(filters=24, kernel_size=(3), activation='relu')(model)
#    if input_shape[0] > 0: model = TimeDistributed(Conv1D(filters=24, kernel_size=3, activation='relu'))(model)
    model = LSTM(16)(model)
    model = Activation('relu')(model)
    model = Dropout(0.2)(model)
    model = Dense(16)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)

    model = Dense(1)(model)
    model = Activation('sigmoid')(model)

    model = Model(inp, model)
    return model

# %% 

# Conv-1D architecture. Just one sample as input
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn3adam_slim(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='cnn3adam')
    model.add(Conv1D (kernel_size = (50), filters = 32, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 64, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Conv1D (kernel_size = (5), filters = 64, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten())
    model.add(Dense (250, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (250, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam())
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn3adam_filter(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    print('use L2 model instead!')
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    model = Sequential(name='cnn3adam_filter')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 256, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 300, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (1500, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization(name='fc1'))
    model.add(Dropout(0.5))
    model.add(Dense (1500, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization(name='fc2'))
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn3adam_filter_l2(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    print('use more L2 model instead!')
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    model = Sequential(name='cnn3adam_filter_l2')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, 
                      kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 256, strides=1, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 300, strides=2, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (1500, activation='relu', kernel_initializer='he_normal',name='fc1'))
    model.add(BatchNormalization(name='bn1'))
    model.add(Dropout(0.5, name='do1'))
    model.add(Dense (1500, activation='relu', kernel_initializer='he_normal',name='fc2'))
    model.add(BatchNormalization(name='bn2'))
    model.add(Dropout(0.5, name='do2'))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
#    print('reset learning rate')
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn3adam_filter_morel2_slim(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='cnn3adam_filter_morel2_slim')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, 
                      kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.05))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 128, strides=1, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.01))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Conv1D (kernel_size = (5), filters = 256, strides=2, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.01))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (512, activation='relu', kernel_initializer='he_normal',name='fc1'))
    model.add(BatchNormalization(name='bn1'))
    model.add(Dropout(0.5, name='do1'))
    model.add(Dense (512, activation='relu', kernel_initializer='he_normal',name='fc2'))
    model.add(BatchNormalization(name='bn2'))
    model.add(Dropout(0.5, name='do2'))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
#    print('reset learning rate')
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn1d(input_shape, n_classes ):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 1)
    """
    model = Sequential(name='1D CNN')
    model.add(Conv1D (kernel_size = (50), filters = 150, strides=5, input_shape=input_shape, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    print(model.output_shape)
    model.add(Conv1D (kernel_size = (8), filters = 200, strides=2, input_shape=input_shape, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    print(model.output_shape)
    model.add(MaxPooling1D(pool_size = (10), strides=(2)))
    print(model.output_shape)

    model.add(Conv1D (kernel_size = (8), filters = 400, strides=2, input_shape=input_shape, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    print(model.output_shape)
    model.add(Flatten())
    model.add(Dense (700, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (700, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta(), metrics=[keras.metrics.categorical_accuracy])
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn1(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='no_MP_small_filters')
    model.add(Conv1D (kernel_size = (10), filters = 64, strides=2, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (10), filters = 64, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (10), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (10), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (10), filters = 150, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Flatten())
    model.add(Dense (1024, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (1024, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn3(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='mixture')
    model.add(Conv1D (kernel_size = (50), filters = 64, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 128, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Flatten())
    model.add(Dense (500, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (500, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn4(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='large_kernel')
    model.add(Conv1D (kernel_size = (100), filters = 128, strides=10, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(Conv1D (kernel_size = (100), filters = 128, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (100), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Flatten())
    model.add(Dense (768, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (768, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def cnn5(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='very_large_kernel')
    model.add(Conv1D (kernel_size = (200), filters = 128, strides=3, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(Conv1D (kernel_size = (200), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (200), filters = 128, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (10), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Flatten())
    model.add(Dense (768, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (768, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
项目:speechless    作者:JuliusKunze    | 项目源码 | 文件源码
def input_to_prediction_length_ratio(self):
        """Returns which factor shorter the output is compared to the input caused by striding."""
        return reduce(lambda x, y: x * y,
                      [layer.strides[0] for layer in self.predictive_net.layers if
                       isinstance(layer, Conv1D)], 1)
项目:keras-text    作者:raghakot    | 项目源码 | 文件源码
def __init__(self, num_filters=64, filter_sizes=[3, 4, 5], dropout_rate=0.5, **conv_kwargs):
        """Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf

        Args:
            num_filters: The number of filters to use per `filter_size`. (Default value = 64)
            filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5])
            **cnn_kwargs: Additional args for building the `Conv1D` layer.
        """
        super(YoonKimCNN, self).__init__(dropout_rate)
        self.num_filters = num_filters
        self.filter_sizes = filter_sizes
        self.conv_kwargs = conv_kwargs
项目:keras-text    作者:raghakot    | 项目源码 | 文件源码
def build_model(self, x):
        pooled_tensors = []
        for filter_size in self.filter_sizes:
            x_i = Conv1D(self.num_filters, filter_size, activation='elu', **self.conv_kwargs)(x)
            x_i = GlobalMaxPooling1D()(x_i)
            pooled_tensors.append(x_i)

        x = pooled_tensors[0] if len(self.filter_sizes) == 1 else concatenate(pooled_tensors, axis=-1)
        return x
项目:mycroft    作者:wpm    | 项目源码 | 文件源码
def __init__(self, training, sequence_length=None, vocabulary_size=None,
                 train_embeddings=SequentialTextEmbeddingClassifier.TRAIN_EMBEDDINGS, dropout=DROPOUT, filters=FILTERS,
                 kernel_size=KERNEL_SIZE, pool_factor=POOL_FACTOR, learning_rate=LEARNING_RATE,
                 language_model=LANGUAGE_MODEL):
        from keras.layers import Dropout, Conv1D, Flatten, MaxPooling1D, Dense
        from keras.models import Sequential
        from keras.optimizers import Adam

        label_names, sequence_length, vocabulary_size = self.parameters_from_training(sequence_length, vocabulary_size,
                                                                                      training, language_model)
        embedder = TextSequenceEmbedder(vocabulary_size, sequence_length, language_model)

        model = Sequential()
        model.add(self.embedding_layer(embedder, sequence_length, train_embeddings, name="embedding"))
        model.add(Conv1D(filters, kernel_size, padding="valid", activation="relu", strides=1, name="convolution"))
        model.add(MaxPooling1D(pool_size=pool_factor, name="pooling"))
        model.add(Flatten(name="flatten"))
        model.add(Dropout(dropout, name="dropout"))
        model.add(Dense(len(label_names), activation="softmax", name="softmax"))
        optimizer = Adam(lr=learning_rate)
        model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"])

        self.filters = filters
        self.kernel_size = kernel_size
        self.pool_factor = pool_factor
        self.dropout = dropout
        super().__init__(model, embedder, label_names)
项目:keras_detect_tool_wear    作者:kidozh    | 项目源码 | 文件源码
def build_model(timestep,input_dim,output_dim,dropout=0.5,recurrent_layers_num=4,cnn_layers_num=6,lr=0.001):
    inp = Input(shape=(timestep,input_dim))
    output = TimeDistributed(Masking(mask_value=0))(inp)
    #output = inp
    output = Conv1D(128, 1)(output)
    output = BatchNormalization()(output)
    output = Activation('relu')(output)

    output = first_block(output, (64, 128), dropout=dropout)


    output = Dropout(dropout)(output)
    for _ in range(cnn_layers_num):
        output = repeated_block(output, (64, 128), dropout=dropout)

    output = Flatten()(output)
    #output = LSTM(128, return_sequences=False)(output)

    output = BatchNormalization()(output)
    output = Activation('relu')(output)
    output = Dense(output_dim)(output)


    model = Model(inp,output)

    optimizer = Adam(lr=lr)

    model.compile(optimizer,'mse',['mae'])
    return model
项目:Fabrik    作者:Cloud-CV    | 项目源码 | 文件源码
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Input2'], 'l2': net['Input4'], 'l3': net['Convolution']}
        # Conv 1D
        net['l1']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l1']
        net['l3']['params']['layer_type'] = '1D'
        net['l3']['shape']['input'] = net['l1']['shape']['output']
        net['l3']['shape']['output'] = [128, 12]
        inp = data(net['l1'], '', 'l1')['l1']
        temp = convolution(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'Conv1D')
        # Conv 2D
        net['l0']['connection']['output'].append('l0')
        net['l3']['connection']['input'] = ['l0']
        net['l3']['params']['layer_type'] = '2D'
        net['l3']['shape']['input'] = net['l0']['shape']['output']
        net['l3']['shape']['output'] = [128, 226, 226]
        inp = data(net['l0'], '', 'l0')['l0']
        temp = convolution(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'Conv2D')
        # Conv 3D
        net['l2']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l2']
        net['l3']['params']['layer_type'] = '3D'
        net['l3']['shape']['input'] = net['l2']['shape']['output']
        net['l3']['shape']['output'] = [128, 226, 226, 18]
        inp = data(net['l2'], '', 'l2')['l2']
        temp = convolution(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'Conv3D')
项目:Color-Names    作者:airalcorn2    | 项目源码 | 文件源码
def build_words2color_model(max_tokens, dim):
    """Build a model that learns to generate colors from words.

    :param max_tokens:
    :param dim:
    :return:
    """
    model = Sequential()
    model.add(Conv1D(128, 1, input_shape = (max_tokens, dim), activation = "tanh"))
    model.add(GlobalMaxPooling1D())
    model.add(Dropout(0.5))
    model.add(Dense(3))

    model.compile(loss = "mse", optimizer = "sgd")
    return model
项目:DrugAI    作者:Gananath    | 项目源码 | 文件源码
def Discriminator(y_dash, dropout=0.4, lr=0.00001, PATH="Dis.h5"):
    """Creates a discriminator model that takes an image as input and outputs a single value, representing whether
the input is real or generated. Unlike normal GANs, the output is not sigmoid and does not represent a probability!
Instead, the output should be as large and negative as possible for generated inputs and as large and positive
as possible for real inputs."""
    model = Sequential()
    model.add(Conv1D(input_shape=(y_dash.shape[1], y_dash.shape[2]),
                     nb_filter=25,
                     filter_length=4,
                     border_mode='same'))
    model.add(LeakyReLU())
    model.add(Dropout(dropout))
    model.add(MaxPooling1D())
    model.add(Conv1D(nb_filter=10,
                     filter_length=4,
                     border_mode='same'))
    model.add(LeakyReLU())
    model.add(Dropout(dropout))
    model.add(MaxPooling1D())
    model.add(Flatten())
    model.add(Dense(64))
    model.add(LeakyReLU())
    model.add(Dropout(dropout))
    model.add(Dense(1))
    model.add(Activation('linear'))

    opt = Adam(lr, beta_1=0.5, beta_2=0.9)

    #reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=30, min_lr=0.000001, verbose=1)
    checkpoint_D = ModelCheckpoint(
        filepath=PATH, verbose=1, save_best_only=True)

    model.compile(optimizer=opt,
                  loss=wasserstein_loss,
                  metrics=['accuracy'])
    return model, checkpoint_D