Python keras.layers 模块,GlobalAveragePooling1D() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用keras.layers.GlobalAveragePooling1D()

项目:keras-surgeon    作者:BenWhetton    | 项目源码 | 文件源码
def test_delete_channels_globalaveragepooling1d(channel_index):
    layer = GlobalAveragePooling1D()
    layer_test_helper_1d_global(layer, channel_index)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_global_average_pooling_1d(self):
        np.random.seed(1988)
        input_dim = 2
        input_length = 10
        filter_length = 3
        nb_filters = 4
        model = Sequential()
        model.add(Conv1D(nb_filters, kernel_size = filter_length, padding='same',
            input_shape=(input_length, input_dim)))
        model.add(GlobalAveragePooling1D())
        self._test_keras_model(model)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(128, 11,
                      name='conv1',
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.BatchNormalization(name='bn1')(x)
        x = kl.Activation('relu', name='act1')(x)
        x = kl.MaxPooling1D(2, name='pool1')(x)

        # 124
        x = self._res_unit(x, [32, 32, 128], stage=1, block=1, stride=2)
        x = self._res_unit(x, [32, 32, 128], stage=1, block=2)

        # 64
        x = self._res_unit(x, [64, 64, 256], stage=2, block=1, stride=2)
        x = self._res_unit(x, [64, 64, 256], stage=2, block=2)

        # 32
        x = self._res_unit(x, [128, 128, 512], stage=3, block=1, stride=2)
        x = self._res_unit(x, [128, 128, 512], stage=3, block=2)

        # 16
        x = self._res_unit(x, [256, 256, 1024], stage=4, block=1, stride=2)

        x = kl.GlobalAveragePooling1D()(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(128, 11,
                      name='conv1',
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.BatchNormalization(name='bn1')(x)
        x = kl.Activation('relu', name='act1')(x)
        x = kl.MaxPooling1D(2, name='pool1')(x)

        # 124
        x = self._res_unit(x, [32, 32, 128], stage=1, block=1, stride=2)
        x = self._res_unit(x, [32, 32, 128], stage=1, block=2)
        x = self._res_unit(x, [32, 32, 128], stage=1, block=3)

        # 64
        x = self._res_unit(x, [64, 64, 256], stage=2, block=1, stride=2)
        x = self._res_unit(x, [64, 64, 256], stage=2, block=2)
        x = self._res_unit(x, [64, 64, 256], stage=2, block=3)

        # 32
        x = self._res_unit(x, [128, 128, 512], stage=3, block=1, stride=2)
        x = self._res_unit(x, [128, 128, 512], stage=3, block=2)
        x = self._res_unit(x, [128, 128, 512], stage=3, block=3)

        # 16
        x = self._res_unit(x, [256, 256, 1024], stage=4, block=1, stride=2)

        x = kl.GlobalAveragePooling1D()(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(128, 11,
                      name='conv1',
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.BatchNormalization(name='bn1')(x)
        x = kl.Activation('relu', name='act1')(x)
        x = kl.MaxPooling1D(2, name='pool1')(x)

        # 124
        x = self._res_unit(x, 128, stage=1, block=1, stride=2)
        x = self._res_unit(x, 128, stage=1, block=2)

        # 64
        x = self._res_unit(x, 256, stage=2, block=1, stride=2)

        # 32
        x = self._res_unit(x, 256, stage=3, block=1, stride=2)

        # 32
        x = self._res_unit(x, 512, stage=4, block=1, stride=2)

        x = kl.GlobalAveragePooling1D()(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(128, 11,
                      name='conv1',
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu', name='act1')(x)
        x = kl.MaxPooling1D(2, name='pool1')(x)

        # 124
        x = self._res_unit(x, [32, 32, 128], stage=1, block=1, stride=2)
        x = self._res_unit(x, [32, 32, 128], atrous=2, stage=1, block=2)
        x = self._res_unit(x, [32, 32, 128], atrous=4, stage=1, block=3)

        # 64
        x = self._res_unit(x, [64, 64, 256], stage=2, block=1, stride=2)
        x = self._res_unit(x, [64, 64, 256], atrous=2, stage=2, block=2)
        x = self._res_unit(x, [64, 64, 256], atrous=4, stage=2, block=3)

        # 32
        x = self._res_unit(x, [128, 128, 512], stage=3, block=1, stride=2)
        x = self._res_unit(x, [128, 128, 512], atrous=2, stage=3, block=2)
        x = self._res_unit(x, [128, 128, 512], atrous=4, stage=3, block=3)

        # 16
        x = self._res_unit(x, [256, 256, 1024], stage=4, block=1, stride=2)

        x = kl.GlobalAveragePooling1D()(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:deepcpg    作者:cangermueller    | 项目源码 | 文件源码
def __call__(self, inputs):
        x = self._merge_inputs(inputs)

        shape = getattr(x, '_keras_shape')
        replicate_model = self._replicate_model(kl.Input(shape=shape[2:]))
        x = kl.TimeDistributed(replicate_model)(x)
        x = kl.GlobalAveragePooling1D()(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
项目:2016CCF-SouGou    作者:AbnerYang    | 项目源码 | 文件源码
def build_model(cat, loss):
    print('Build model...')
    model = Sequential()

    # we start off with an efficient embedding layer which maps
    # our vocab indices into embedding_dims dimensions
    model.add(Embedding(max_features,
                        embedding_dims,
                        input_length=maxlen))

    model.add(Dropout(0.5))

    # we add a GlobalAveragePooling1D, which will average the embeddings
    # of all words in the document
    model.add(GlobalAveragePooling1D())

    model.add(Dropout(0.5))

    # We project onto a single unit output layer, and squash it with a sigmoid:
    model.add(Dense(cat, activation='softmax'))

    model.compile(loss=loss,
                  optimizer='adam',
                  metrics=['accuracy'])

    return model
项目:keras-text    作者:raghakot    | 项目源码 | 文件源码
def build_model(self, x):
        x = GlobalAveragePooling1D()(x)
        return x
项目:textfool    作者:bogdan-kulynych    | 项目源码 | 文件源码
def build_model(max_length=1000,
                nb_filters=64,
                kernel_size=3,
                pool_size=2,
                regularization=0.01,
                weight_constraint=2.,
                dropout_prob=0.4,
                clear_session=True):
    if clear_session:
        K.clear_session()

    model = Sequential()
    model.add(Embedding(
        embeddings.shape[0],
        embeddings.shape[1],
        input_length=max_length,
        trainable=False,
        weights=[embeddings]))

    model.add(Conv1D(nb_filters, kernel_size, activation='relu'))
    model.add(Conv1D(nb_filters, kernel_size, activation='relu'))
    model.add(MaxPooling1D(pool_size))

    model.add(Dropout(dropout_prob))

    model.add(Conv1D(nb_filters * 2, kernel_size, activation='relu'))
    model.add(Conv1D(nb_filters * 2, kernel_size, activation='relu'))
    model.add(MaxPooling1D(pool_size))

    model.add(Dropout(dropout_prob))

    model.add(GlobalAveragePooling1D())
    model.add(Dense(1,
        kernel_regularizer=l2(regularization),
        kernel_constraint=maxnorm(weight_constraint),
        activation='sigmoid'))

    model.compile(
        loss='binary_crossentropy',
        optimizer='rmsprop',
        metrics=['accuracy'])

    return model