Python keras.layers 模块,ELU 实例源码

我们从Python开源项目中,提取了以下14个代码示例,用于说明如何使用keras.layers.ELU

项目:youarespecial    作者:endgameinc    | 项目源码 | 文件源码
def ResidualBlock1D_helper(layers, kernel_size, filters, final_stride=1):
    def f(_input):
        basic = _input
        for ln in range(layers):
            #basic = BatchNormalization()( basic ) # triggers known keras bug w/ TimeDistributed: https://github.com/fchollet/keras/issues/5221
            basic = ELU()(basic)  
            basic = Conv1D(filters, kernel_size, kernel_initializer='he_normal',
                           kernel_regularizer=l2(1.e-4), padding='same')(basic)

        # note that this strides without averaging
        return AveragePooling1D(pool_size=1, strides=final_stride)(Add()([_input, basic]))

    return f
项目:pCVR    作者:xjtushilei    | 项目源码 | 文件源码
def convresblock(x, nfeats=8, ksize=3, nskipped=2, elu=True):
    """The proposed residual block from [4].

    Running with elu=True will use ELU nonlinearity and running with
    elu=False will use BatchNorm + RELU nonlinearity.  While ELU's are fast
    due to the fact they do not suffer from BatchNorm overhead, they may
    overfit because they do not offer the stochastic element of the batch
    formation process of BatchNorm, which acts as a good regularizer.

    # Arguments
        x: 4D tensor, the tensor to feed through the block
        nfeats: Integer, number of feature maps for conv layers.
        ksize: Integer, width and height of conv kernels in first convolution.
        nskipped: Integer, number of conv layers for the residual function.
        elu: Boolean, whether to use ELU or BN+RELU.

    # Input shape
        4D tensor with shape:
        `(batch, channels, rows, cols)`

    # Output shape
        4D tensor with shape:
        `(batch, filters, rows, cols)`
    """
    y0 = Conv2D(nfeats, ksize, padding='same')(x)
    y = y0
    for i in range(nskipped):
        if elu:
            y = ELU()(y)
        else:
            y = BatchNormalization(axis=1)(y)
            y = Activation('relu')(y)
        y = Conv2D(nfeats, 1, padding='same')(y)
    return layers.add([y0, y])
项目:gym-malware    作者:endgameinc    | 项目源码 | 文件源码
def generate_dense_model(input_shape, layers, nb_actions):
    model = Sequential()
    model.add(Flatten(input_shape=input_shape))
    model.add(Dropout(0.1))  # drop out the input to make model less sensitive to any 1 feature

    for layer in layers:
        model.add(Dense(layer))
        model.add(BatchNormalization())
        model.add(ELU(alpha=1.0))

    model.add(Dense(nb_actions))
    model.add(Activation('linear'))
    print(model.summary())

    return model
项目:Neural-Chatbot    作者:saurabhmathur96    | 项目源码 | 文件源码
def Encoder(hidden_size, activation=None, return_sequences=True, bidirectional=False, use_gru=True):
    if activation is None:
        activation = ELU()
    if use_gru:
        def _encoder(x):
            if bidirectional:
                branch_1 = GRU(int(hidden_size/2), activation='linear',
                               return_sequences=return_sequences, go_backwards=False)(x)
                branch_2 = GRU(int(hidden_size/2), activation='linear',
                               return_sequences=return_sequences, go_backwards=True)(x)
                x = concatenate([branch_1, branch_2])
                x = activation(x)
                return x
            else:
                x = GRU(hidden_size, activation='linear',
                        return_sequences=return_sequences)(x)
                x = activation(x)
                return x
    else:
        def _encoder(x):
            if bidirectional:
                branch_1 = LSTM(int(hidden_size/2), activation='linear',
                                return_sequences=return_sequences, go_backwards=False)(x)
                branch_2 = LSTM(int(hidden_size/2), activation='linear',
                                return_sequences=return_sequences, go_backwards=True)(x)
                x = concatenate([branch_1, branch_2])
                x = activation(x)
                return x
            else:
                x = LSTM(hidden_size, activation='linear',
                         return_sequences=return_sequences)(x)
                x = activation(x)
                return x
    return _encoder
项目:Neural-Chatbot    作者:saurabhmathur96    | 项目源码 | 文件源码
def AttentionDecoder(hidden_size, activation=None, return_sequences=True, bidirectional=False, use_gru=True):
    if activation is None:
        activation = ELU()
    if use_gru:
        def _decoder(x, attention):
            if bidirectional:
                branch_1 = AttentionWrapper(GRU(int(hidden_size/2), activation='linear', return_sequences=return_sequences,
                                                go_backwards=False), attention, single_attention_param=True)(x)
                branch_2 = AttentionWrapper(GRU(int(hidden_size/2), activation='linear', return_sequences=return_sequences,
                                                go_backwards=True), attention, single_attention_param=True)(x)
                x = concatenate([branch_1, branch_2])
                return activation(x)
            else:
                x = AttentionWrapper(GRU(hidden_size, activation='linear',
                                         return_sequences=return_sequences), attention, single_attention_param=True)(x)
                x = activation(x)
                return x
    else:
        def _decoder(x, attention):
            if bidirectional:
                branch_1 = AttentionWrapper(LSTM(int(hidden_size/2), activation='linear', return_sequences=return_sequences,
                                                 go_backwards=False), attention, single_attention_param=True)(x)
                branch_2 = AttentionWrapper(LSTM(hidden_size, activation='linear', return_sequences=return_sequences,
                                                go_backwards=True), attention, single_attention_param=True)(x)
                x = concatenate([branch_1, branch_2])
                x = activation(x)
                return x
            else:
                x = AttentionWrapper(LSTM(hidden_size, activation='linear', return_sequences=return_sequences),
                                     attention, single_attention_param=True)(x)
                x = activation(x)
                return x

    return _decoder
项目:Neural-Chatbot    作者:saurabhmathur96    | 项目源码 | 文件源码
def Decoder(hidden_size, activation=None, return_sequences=True, bidirectional=False, use_gru=True):
    if activation is None:
        activation = ELU()
    if use_gru:
        def _decoder(x):
            if bidirectional:
                x = Bidirectional(
                    GRU(int(hidden_size/2), activation='linear', return_sequences=return_sequences))(x)
                x = activation(x)
                return x
            else:
                x = GRU(hidden_size, activation='linear',
                        return_sequences=return_sequences)(x)
                x = activation(x)
                return x
    else:
        def _decoder(x):
            if bidirectional:
                x = Bidirectional(
                    LSTM(int(hidden_size/2), activation='linear', return_sequences=return_sequences))(x)
                x = activation(x)
                return x
            else:
                x = LSTM(hidden_size, activation='linear',
                         return_sequences=return_sequences)(x)
                x = activation(x)
                return x
    return _decoder
项目:youarespecial    作者:endgameinc    | 项目源码 | 文件源码
def create_model(input_shape, hidden_layers=[1024, 512, 256], input_dropout=0.1, hidden_dropout=0.5):
    '''Define a simple multilayer perceptron.

    Args:
        input_shape (tuple): input shape to the model. For this model, should be of shape (dim,)
        input_dropout (float): fraction of input features to drop out during training
        hidden_layers (tuple): a tuple/list with number of hidden units in each hidden layer

    Returns:
        keras.models.Sequential : a model to train
    '''
    model = Sequential()

    # dropout the input to prevent overfitting to any one feature
    # (a similar concept to randomization in random forests,
    #   but we choose less severe feature sampling  )
    model.add(Dropout(input_dropout, input_shape=input_shape))

    # set up hidden layers
    for n_hidden_units in hidden_layers:
        # the layer...activation will come later
        model.add(Dense(n_hidden_units))
        # dropout to prevent overfitting
        model.add(Dropout(hidden_dropout))
        # batchnormalization helps training
        model.add(BatchNormalization())
        # ...the activation!
        model.add(ELU())

    # the output layer
    model.add(Dense(1, activation='sigmoid'))

    # we'll optimize with plain old sgd
    model.compile(loss='binary_crossentropy',
                  optimizer='sgd', metrics=['accuracy'])

    return model
项目:keras-surgeon    作者:BenWhetton    | 项目源码 | 文件源码
def test_delete_channels_advanced_activations(channel_index, data_format):
    layer_test_helper_flatten_2d(LeakyReLU(), channel_index, data_format)
    layer_test_helper_flatten_2d(ELU(), channel_index, data_format)
    layer_test_helper_flatten_2d(ThresholdedReLU(), channel_index, data_format)
项目:behavioral-cloning    作者:BillZito    | 项目源码 | 文件源码
def comma_model():
  row, col, depth = 66, 200, 3
  shape = (row, col, depth)

  model = Sequential()

  model.add(Lambda(lambda x: x/127.5 -1., input_shape=shape, output_shape=shape))
  model.add(Convolution2D(16, 8, 8, subsample=(4, 4), border_mode='same'))
  model.add(ELU())
  model.add(Convolution2D(32, 5, 5, subsample=(2, 2), border_mode='same'))
  model.add(ELU())
  model.add(Convolution2D(64, 5, 5, subsample=(2, 2), border_mode='same'))

  model.add(Flatten())
  model.add(Dropout(.2))
  model.add(ELU())
  model.add(Dense(512))
  model.add(Dropout(.5))
  model.add(ELU())

  #the fully connected layer accounts for huge % of parameters (50+)
  model.add(Dense(1))

  model.compile(loss='mse', optimizer='adam')
  model.summary()
  return model
项目:DeHIC    作者:jingge326    | 项目源码 | 文件源码
def convresblock(x, nfeats=8, ksize=3, nskipped=2, elu=True):
    y0 = Conv2D(nfeats, ksize, padding='same')(x)
    y = y0
    for i in range(nskipped):
        if elu:
            y = ELU()(y)
        else:
            y = BatchNormalization(axis=1)(y)
            y = Activation('relu')(y)
        y = Conv2D(nfeats, 1, padding='same')(y)
    return layers.add([y0, y])


# This example assume 'channels_first' data format.
项目:nn-transfer    作者:gzuidhof    | 项目源码 | 文件源码
def __init__(self):
        super(ELUNet, self).__init__()
        self.elu = nn.ELU()
项目:nn-transfer    作者:gzuidhof    | 项目源码 | 文件源码
def test_elu(self):
        keras_model = Sequential()
        keras_model.add(ELU(input_shape=(3, 32, 32), name='elu'))
        keras_model.compile(loss=keras.losses.categorical_crossentropy,
                            optimizer=keras.optimizers.SGD())

        pytorch_model = ELUNet()

        self.transfer(keras_model, pytorch_model)
        self.assertEqualPrediction(keras_model, pytorch_model, self.test_data)

    # Tests activation function with learned parameters
项目:self-driving    作者:BoltzmannBrain    | 项目源码 | 文件源码
def buildModel(cameraFormat=(3, 480, 640)):
  """
  Build and return a CNN; details in the comments.
  The intent is a scaled down version of the model from "End to End Learning
  for Self-Driving Cars": https://arxiv.org/abs/1604.07316.

  Args:
    cameraFormat: (3-tuple) Ints to specify the input dimensions (color
        channels, rows, columns).
  Returns:
    A compiled Keras model.
  """
  print "Building model..."
  ch, row, col = cameraFormat

  model = Sequential()

  # Use a lambda layer to normalize the input data
  model.add(Lambda(
      lambda x: x/127.5 - 1.,
      input_shape=(ch, row, col),
      output_shape=(ch, row, col))
  )

  # Several convolutional layers, each followed by ELU activation
  # 8x8 convolution (kernel) with 4x4 stride over 16 output filters
  model.add(Convolution2D(16, 8, 8, subsample=(4, 4), border_mode="same"))
  model.add(ELU())
  # 5x5 convolution (kernel) with 2x2 stride over 32 output filters
  model.add(Convolution2D(32, 5, 5, subsample=(2, 2), border_mode="same"))
  model.add(ELU())
  # 5x5 convolution (kernel) with 2x2 stride over 64 output filters
  model.add(Convolution2D(64, 5, 5, subsample=(2, 2), border_mode="same"))
  # Flatten the input to the next layer
  model.add(Flatten())
  # Apply dropout to reduce overfitting
  model.add(Dropout(.2))
  model.add(ELU())
  # Fully connected layer
  model.add(Dense(512))
  # More dropout
  model.add(Dropout(.5))
  model.add(ELU())
  # Fully connected layer with one output dimension (representing the speed).
  model.add(Dense(1))

  # Adam optimizer is a standard, efficient SGD optimization method
  # Loss function is mean squared error, standard for regression problems
  model.compile(optimizer="adam", loss="mse")

  return model
项目:carnd-behavioral-cloning    作者:nikidimi    | 项目源码 | 文件源码
def keras_nn(X_train, y_train):
    """
    Constructs a neural network using keras and trains it.
    The best final networks is saved in model.json and model.h5

    Parameters
    ----------
    X_train : numpy array
        The images
    y_train : numpy array
        The angles

    """
    model = Sequential()

    # Further reduces the dimension of the image to 8x16
    model.add(AveragePooling2D((2, 2), border_mode='valid', input_shape=(16, 32, 1)))
    # Applies 2x2 convolution
    model.add(Convolution2D(1, 2, 2, subsample=(1, 1)))
    model.add(ELU())
    # Max Pooling to reduce the dimensions. 2X4 used because it matches the aspect ratio of the input
    model.add(MaxPooling2D((2, 4), border_mode='valid'))
    # Droput - We only have 10 connections at this point, but it still improves performance. However it should be kept low, e.g. 0.5 doesn't work
    model.add(Dropout(0.25))
    model.add(Flatten())
    # The final layer - outputs a float number (the steering angle)
    model.add(Dense(1))  #

    # Show a summary of the neural network
    model.summary()

    # Save the best model by validation mean squared error
    checkpoint = ModelCheckpoint("model.h5", monitor='val_mean_squared_error', verbose=1, save_best_only=True, mode='min')

    # Stop training when there is no improvment. 
    # This is to speed up training, the accuracy is not affected, because the checkpoint will pick-up the best model anyway
    early_stop = EarlyStopping(monitor='val_mean_squared_error', min_delta=0.0001, patience=4, verbose=1, mode='min')

    # Compile the model with Adam optimizer and monitor mean squared error
    model.compile('adam', 'mean_squared_error', ['mean_squared_error'])

    # Save the model to JSON
    model_json = model.to_json()
    with open("model.json", "w") as model_file:
        model_file.write(model_json)

    # Start training.
    # nb_epoch should be a big number, there is early stopping callback anyway
    # Data is split by keras to training and validation
    history = model.fit(X_train, y_train, batch_size=32, nb_epoch=150, verbose=1, callbacks=[checkpoint, early_stop], validation_split=0.2, shuffle=True)