Python keras.layers 模块,multiply() 实例源码

我们从Python开源项目中,提取了以下21个代码示例,用于说明如何使用keras.layers.multiply()

项目:Hotpot    作者:Liang-Qiu    | 项目源码 | 文件源码
def prep_model(inputs, N, s0pad, s1pad, c, granlevels=1):
    # LSTM
    lstm = LSTM(N, return_sequences=True, implementation=2, 
                   kernel_regularizer=l2(c['l2reg']), recurrent_regularizer=l2(c['l2reg']),
                   bias_regularizer=l2(c['l2reg']))
    x1 = inputs[0]
    x2 = inputs[1]
    h1 = lstm(x1)
    h2 = lstm(x2)

    W_x = Dense(N, kernel_initializer='glorot_uniform', use_bias=True, 
                   kernel_regularizer=l2(c['l2reg']))
    W_h = Dense(N, kernel_initializer='orthogonal', use_bias=True,
                   kernel_regularizer=l2(c['l2reg']))
    sigmoid = Activation('sigmoid')
    a1 = multiply([x1, sigmoid( add([W_x(x1), W_h(h1)]) )])
    a2 = multiply([x2, sigmoid( add([W_x(x2), W_h(h2)]) )])

    # Averaging
    avg = Lambda(function=lambda x: K.mean(x, axis=1),
                 output_shape=lambda shape: (shape[0], ) + shape[2:])
    gran1 = avg(a1)
    gran2 = avg(a2)

    return [gran1, gran2], N
项目:Hotpot    作者:Liang-Qiu    | 项目源码 | 文件源码
def prep_model(inputs, N, s0pad, s1pad, c, granlevels=1):
    # LSTM
    lstm = LSTM(N, return_sequences=True, implementation=2, 
                   kernel_regularizer=l2(c['l2reg']), recurrent_regularizer=l2(c['l2reg']),
                   bias_regularizer=l2(c['l2reg']))
    x1 = inputs[0]
    x2 = inputs[1]
    h1 = lstm(x1)
    h2 = lstm(x2)

    W_x = Dense(N, kernel_initializer='glorot_uniform', use_bias=True, 
                   kernel_regularizer=l2(c['l2reg']))
    W_h = Dense(N, kernel_initializer='orthogonal', use_bias=True,
                   kernel_regularizer=l2(c['l2reg']))
    sigmoid = Activation('sigmoid')
    a1 = multiply([x1, sigmoid( add([W_x(x1), W_h(h1)]) )])
    a2 = multiply([x2, sigmoid( add([W_x(x2), W_h(h2)]) )])

    # Averaging
    avg = Lambda(function=lambda x: K.mean(x, axis=1),
                 output_shape=lambda shape: (shape[0], ) + shape[2:])
    gran1 = avg(a1)
    gran2 = avg(a2)

    return [gran1, gran2], N
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_tiny_mul_random(self):
        np.random.seed(1988)
        input_dim = 10
        num_channels = 6

        # Define a model
        input_tensor = Input(shape = (input_dim, ))
        x1 = Dense(num_channels)(input_tensor)
        x2 = Dense(num_channels)(x1)
        x3 = Dense(num_channels)(x1)
        x4 = multiply([x2, x3])
        x5 = Dense(num_channels)(x4)

        model = Model(inputs=[input_tensor], outputs=[x5])

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Get the coreml model
        self._test_keras_model(model)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_dense_elementwise_params(self):
        options = dict(
            modes = [add, multiply, concatenate, average, maximum]
        )
        def build_model(mode):
            x1 = Input(shape=(3,))
            x2 = Input(shape=(3,))
            y1 = Dense(4)(x1)
            y2 = Dense(4)(x2)
            z = mode([y1, y2])
            model = Model([x1,x2], z)
            return mode, model

        product = itertools.product(*options.values())
        args = [build_model(p[0]) for p in product]
        print("Testing a total of %s cases. This could take a while" % len(args))
        for param, model in args:
            self._run_test(model, param)
项目:recurrentshop    作者:farizrahman4u    | 项目源码 | 文件源码
def RHN(input_dim, hidden_dim, depth):
    # Wrapped model
    inp = Input(batch_shape=(batch_size, input_dim))
    state = Input(batch_shape=(batch_size, hidden_dim))
    drop_mask = Input(batch_shape=(batch_size, hidden_dim))
    # To avoid all zero mask causing gradient to vanish
    inverted_drop_mask = Lambda(lambda x: 1.0 - x, output_shape=lambda s: s)(drop_mask)
    drop_mask_2 = Lambda(lambda x: x + 0., output_shape=lambda s: s)(inverted_drop_mask)
    dropped_state = multiply([state, inverted_drop_mask])
    y, new_state = RHNCell(units=hidden_dim, recurrence_depth=depth,
                           kernel_initializer=weight_init,
                           kernel_regularizer=l2(weight_decay),
                           kernel_constraint=max_norm(gradient_clip),
                           bias_initializer=Constant(transform_bias),
                           recurrent_initializer=weight_init,
                           recurrent_regularizer=l2(weight_decay),
                           recurrent_constraint=max_norm(gradient_clip))([inp, dropped_state])
    return RecurrentModel(input=inp, output=y,
                          initial_states=[state, drop_mask],
                          final_states=[new_state, drop_mask_2])


# lr decay Scheduler
项目:recurrentshop    作者:farizrahman4u    | 项目源码 | 文件源码
def QRNcell():
    xq = Input(batch_shape=(batch_size, embedding_dim * 2))
    # Split into context and query
    xt = Lambda(lambda x, dim: x[:, :dim], arguments={'dim': embedding_dim},
                output_shape=lambda s: (s[0], s[1] / 2))(xq)
    qt = Lambda(lambda x, dim: x[:, dim:], arguments={'dim': embedding_dim},
                output_shape=lambda s: (s[0], s[1] / 2))(xq)

    h_tm1 = Input(batch_shape=(batch_size, embedding_dim))

    zt = Dense(1, activation='sigmoid', bias_initializer=Constant(2.5))(multiply([xt, qt]))
    zt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(zt)
    ch = Dense(embedding_dim, activation='tanh')(concatenate([xt, qt], axis=-1))
    rt = Dense(1, activation='sigmoid')(multiply([xt, qt]))
    rt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(rt)
    ht = add([multiply([zt, ch, rt]), multiply([Lambda(lambda x: 1 - x, output_shape=lambda s: s)(zt), h_tm1])])
    return RecurrentModel(input=xq, output=ht, initial_states=[h_tm1], final_states=[ht], return_sequences=True)


#
# Load data
#
项目:deeppavlov    作者:deepmipt    | 项目源码 | 文件源码
def cosine_dist(self, inputs):
        """Define a function for a lambda layer of a model."""

        input1, input2 = inputs
        a = K.abs(input1-input2)
        b = multiply(inputs)
        return K.concatenate([a, b])
项目:deeppavlov    作者:deepmipt    | 项目源码 | 文件源码
def cosine_dist(self, inputs):
        input1, input2 = inputs
        a = K.abs(input1-input2)
        b = multiply(inputs)
        return K.concatenate([a, b])
项目:Fabrik    作者:Cloud-CV    | 项目源码 | 文件源码
def eltwise(layer, layer_in, layerId):
    out = {}
    if (layer['params']['layer_type'] == 'Multiply'):
        # This input reverse is to handle visualization
        out[layerId] = multiply(layer_in[::-1])
    elif (layer['params']['layer_type'] == 'Sum'):
        out[layerId] = add(layer_in[::-1])
    elif (layer['params']['layer_type'] == 'Average'):
        out[layerId] = average(layer_in[::-1])
    elif (layer['params']['layer_type'] == 'Dot'):
        out[layerId] = dot(layer_in[::-1], -1)
    else:
        out[layerId] = maximum(layer_in[::-1])
    return out
项目:Hotpot    作者:Liang-Qiu    | 项目源码 | 文件源码
def mlp_ptscorer(inputs, Ddim, N, l2reg, pfx='out', Dinit='glorot_uniform', sum_mode='sum', extra_inp=[]):
    """ Element-wise features from the pair fed to an MLP. """
    linear = Activation('linear')
    if sum_mode == 'absdiff':
        absdiff = Lambda(function=lambda x: K.abs(x[0] - x[1]),
                         output_shape=lambda shape: shape[0])
        # model.add_node(name=pfx+'sum', layer=absdiff_merge(model, inputs))
        mlp_inputs = absdiff(inputs)
    elif sum_mode == 'sum':
        outsum = linear(add(inputs))
        outmul = linear(multiply(inputs))
        mlp_inputs = [outsum, outmul] + extra_inp

    def mlp_args(mlp_inputs):
        """ return model.add_node() args that are good for mlp_inputs list
        of both length 1 and more than 1. """
        if isinstance(mlp_inputs, list):
            mlp_inputs = concatenate(mlp_inputs)
        return mlp_inputs

    # Ddim may be either 0 (no hidden layer), scalar (single hidden layer) or
    # list (multiple hidden layers)
    if Ddim == 0:
        mlp_inputs = mlp_args(mlp_inputs)
        Ddim = []
    elif not isinstance(Ddim, list):
        Ddim = [Ddim]
    if Ddim:
        for i, D in enumerate(Ddim):
            mlp_inputs = Dense(int(N*D), activation='tanh', kernel_initializer=Dinit, kernel_regularizer=l2(l2reg))(mlp_args(mlp_inputs))
            # model.add_node(name=pfx+'hdn[%d]'%(i,),
            #                layer=Dense(output_dim=int(N*D), W_regularizer=l2(l2reg), activation='tanh', init=Dinit),
            #                **mlp_args(mlp_inputs))
            # mlp_inputs = [pfx+'hdn[%d]'%(i,)]
    outmlp = Dense(1, kernel_regularizer=l2(l2reg))(mlp_inputs)
    return outmlp
项目:Hotpot    作者:Liang-Qiu    | 项目源码 | 文件源码
def mlp_ptscorer(inputs, Ddim, N, l2reg, pfx='out', Dinit='glorot_uniform', sum_mode='sum', extra_inp=[]):
    """ Element-wise features from the pair fed to an MLP. """
    linear = Activation('linear')
    if sum_mode == 'absdiff':
        absdiff = Lambda(function=lambda x: K.abs(x[0] - x[1]),
                         output_shape=lambda shape: shape[0])
        # model.add_node(name=pfx+'sum', layer=absdiff_merge(model, inputs))
        mlp_inputs = absdiff(inputs)
    elif sum_mode == 'sum':
        outsum = linear(add(inputs))
        outmul = linear(multiply(inputs))
        mlp_inputs = [outsum, outmul] + extra_inp

    def mlp_args(mlp_inputs):
        """ return model.add_node() args that are good for mlp_inputs list
        of both length 1 and more than 1. """
        if isinstance(mlp_inputs, list):
            mlp_inputs = concatenate(mlp_inputs)
        return mlp_inputs

    # Ddim may be either 0 (no hidden layer), scalar (single hidden layer) or
    # list (multiple hidden layers)
    if Ddim == 0:
        mlp_inputs = mlp_args(mlp_inputs)
        Ddim = []
    elif not isinstance(Ddim, list):
        Ddim = [Ddim]
    if Ddim:
        for i, D in enumerate(Ddim):
            mlp_inputs = Dense(int(N*D), activation='tanh', kernel_initializer=Dinit, kernel_regularizer=l2(l2reg))(mlp_args(mlp_inputs))
            # model.add_node(name=pfx+'hdn[%d]'%(i,),
            #                layer=Dense(output_dim=int(N*D), W_regularizer=l2(l2reg), activation='tanh', init=Dinit),
            #                **mlp_args(mlp_inputs))
            # mlp_inputs = [pfx+'hdn[%d]'%(i,)]
    outmlp = Dense(1, kernel_regularizer=l2(l2reg))(mlp_inputs)
    return outmlp
项目:Keras-GAN    作者:eriklindernoren    | 项目源码 | 文件源码
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=100))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(100,))
        label = Input(shape=(1,), dtype='int32')

        label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))

        input = multiply([noise, label_embedding])

        img = model(input)

        return Model([noise, label], img)
项目:recurrentshop    作者:farizrahman4u    | 项目源码 | 文件源码
def RWA(input_dim, output_dim):
    x = Input((input_dim, ))
    h_tm1 = Input((output_dim, ))
    n_tm1 = Input((output_dim, ))
    d_tm1 = Input((output_dim, ))

    x_h = concatenate([x, h_tm1])

    u = Dense(output_dim)(x)
    g = Dense(output_dim, activation='tanh')(x_h)

    a = Dense(output_dim, use_bias=False)(x_h)
    e_a = Lambda(lambda x: K.exp(x))(a)

    z = multiply([u, g])
    nt = add([n_tm1, multiply([z, e_a])])
    dt = add([d_tm1, e_a])
    dt = Lambda(lambda x: 1.0 / x)(dt)
    ht = multiply([nt, dt])
    ht = Activation('tanh')(ht)

    return RecurrentModel(input=x, output=ht,
                          initial_states=[h_tm1, n_tm1, d_tm1],
                          final_states=[ht, nt, dt],
                          state_initializer=[initializers.random_normal(stddev=1.0)])


#####################################################################
# Settings
#####################################################################
项目:recurrentshop    作者:farizrahman4u    | 项目源码 | 文件源码
def RWA(input_dim, output_dim):
    x = Input((input_dim, ))
    h_tm1 = Input((output_dim, ))
    n_tm1 = Input((output_dim, ))
    d_tm1 = Input((output_dim, ))

    x_h = concatenate([x, h_tm1])

    u = Dense(output_dim)(x)
    g = Dense(output_dim, activation='tanh')(x_h)

    a = Dense(output_dim, use_bias=False)(x_h)
    e_a = Lambda(lambda x: K.exp(x))(a)

    z = multiply([u, g])
    nt = add([n_tm1, multiply([z, e_a])])
    dt = add([d_tm1, e_a])
    dt = Lambda(lambda x: 1.0 / x)(dt)
    ht = multiply([nt, dt])
    ht = Activation('tanh')(ht)

    return RecurrentModel(input=x, output=ht,
                          initial_states=[h_tm1, n_tm1, d_tm1],
                          final_states=[ht, nt, dt],
                          state_initializer=[initializers.random_normal(stddev=1.0)])


#####################################################################
# Settings
#####################################################################
项目:Kerasimo    作者:s-macke    | 项目源码 | 文件源码
def build_generator(latent_size):
    # we will map a pair of (z, L), where z is a latent vector and L is a
    # label drawn from P_c, to image space (..., 1, 28, 28)
    cnn = Sequential()

    cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
    cnn.add(Dense(128 * 7 * 7, activation='relu'))
    cnn.add(Reshape((128, 7, 7)))

    # upsample to (..., 14, 14)
    cnn.add(UpSampling2D(size=(2, 2)))
    cnn.add(Conv2D(256, 5, padding='same',
                   activation='relu',
                   kernel_initializer='glorot_normal'))

    # upsample to (..., 28, 28)
    cnn.add(UpSampling2D(size=(2, 2)))
    cnn.add(Conv2D(128, 5, padding='same',
                   activation='relu',
                   kernel_initializer='glorot_normal'))

    # take a channel axis reduction
    cnn.add(Conv2D(1, 2, padding='same',
                   activation='tanh',
                   kernel_initializer='glorot_normal'))

    # this is the z space commonly refered to in GAN papers
    latent = Input(shape=(latent_size, ))

    # this will be our label
    image_class = Input(shape=(1,), dtype='int32')

    # 10 classes in MNIST
    cls = Flatten()(Embedding(10, latent_size,
                              embeddings_initializer='glorot_normal')(image_class))

    # hadamard product between z-space and a class conditional embedding
    h = layers.multiply([latent, cls])

    fake_image = cnn(h)

    return Model([latent, image_class], fake_image)
项目:pCVR    作者:xjtushilei    | 项目源码 | 文件源码
def build_generator(latent_size):
    # we will map a pair of (z, L), where z is a latent vector and L is a
    # label drawn from P_c, to image space (..., 1, 28, 28)
    cnn = Sequential()

    cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
    cnn.add(Dense(128 * 7 * 7, activation='relu'))
    cnn.add(Reshape((128, 7, 7)))

    # upsample to (..., 14, 14)
    cnn.add(UpSampling2D(size=(2, 2)))
    cnn.add(Conv2D(256, 5, padding='same',
                   activation='relu',
                   kernel_initializer='glorot_normal'))

    # upsample to (..., 28, 28)
    cnn.add(UpSampling2D(size=(2, 2)))
    cnn.add(Conv2D(128, 5, padding='same',
                   activation='relu',
                   kernel_initializer='glorot_normal'))

    # take a channel axis reduction
    cnn.add(Conv2D(1, 2, padding='same',
                   activation='tanh',
                   kernel_initializer='glorot_normal'))

    # this is the z space commonly refered to in GAN papers
    latent = Input(shape=(latent_size, ))

    # this will be our label
    image_class = Input(shape=(1,), dtype='int32')

    # 10 classes in MNIST
    cls = Flatten()(Embedding(10, latent_size,
                              embeddings_initializer='glorot_normal')(image_class))

    # hadamard product between z-space and a class conditional embedding
    h = layers.multiply([latent, cls])

    fake_image = cnn(h)

    return Model([latent, image_class], fake_image)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def _augment_model(self, model, score, reweighting):
        # Extract some info from the model
        loss = model.loss
        optimizer = model.optimizer.__class__(**model.optimizer.get_config())
        output_shape = K.int_shape(model.output)[1:]
        if isinstance(loss, str) and loss.startswith("sparse"):
            output_shape = output_shape[:-1] + (1,)

        # Make sure that some stuff look ok
        assert not isinstance(loss, list)

        # We need to create two more inputs
        #   1. the targets
        #   2. the predicted scores
        y_true = Input(shape=output_shape)
        pred_score = Input(shape=(reweighting.weight_size,))

        # Create a loss layer and a score layer
        loss_tensor = LossLayer(loss)([y_true, model.output])
        last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
        score_tensor = _get_scoring_layer(
            score,
            y_true,
            model.output,
            loss,
            model.layers[last_layer]
        )

        # Create the sample weights
        weights = reweighting.weight_layer()([score_tensor, pred_score])

        # Create the output
        weighted_loss = multiply([loss_tensor, weights])

        # Create the metric layers
        metrics = model.metrics or []
        metrics = [
            MetricLayer(metric)([y_true, model.output])
            for metric in metrics
        ]

        # Finally build, compile, return
        new_model = TransparentModel(
            inputs=_tolist(model.input) + [y_true, pred_score],
            outputs=[weighted_loss],
            observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
        )
        new_model.compile(
            optimizer=optimizer,
            loss=lambda y_true, y_pred: y_pred
        )

        return new_model
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def _augment_model(self, model, score, reweighting):
        # Extract some info from the model
        loss = model.loss
        optimizer = model.optimizer.__class__(**model.optimizer.get_config())
        output_shape = K.int_shape(model.output)[1:]
        if isinstance(loss, str) and loss.startswith("sparse"):
            output_shape = output_shape[:-1] + (1,)

        # Make sure that some stuff look ok
        assert not isinstance(loss, list)

        # We need to create two more inputs
        #   1. the targets
        #   2. the predicted scores
        y_true = Input(shape=output_shape)
        pred_score = Input(shape=(reweighting.weight_size,))

        # Create a loss layer and a score layer
        loss_tensor = LossLayer(loss)([y_true, model.output])
        last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
        score_tensor = _get_scoring_layer(
            score,
            y_true,
            model.output,
            loss,
            model.layers[last_layer]
        )

        # Create the sample weights
        weights = reweighting.weight_layer()([score_tensor, pred_score])

        # Create the output
        weighted_loss = multiply([loss_tensor, weights])

        # Create the metric layers
        metrics = model.metrics or []
        metrics = [
            MetricLayer(metric)([y_true, model.output])
            for metric in metrics
        ]

        # Finally build, compile, return
        new_model = TransparentModel(
            inputs=_tolist(model.input) + [y_true, pred_score],
            outputs=[weighted_loss],
            observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
        )
        new_model.compile(
            optimizer=optimizer,
            loss=lambda y_true, y_pred: y_pred
        )

        return new_model
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def _augment_model(self, model, score, reweighting):
        # Extract some info from the model
        loss = model.loss
        optimizer = model.optimizer.__class__(**model.optimizer.get_config())
        output_shape = K.int_shape(model.output)[1:]
        if isinstance(loss, str) and loss.startswith("sparse"):
            output_shape = output_shape[:-1] + (1,)

        # Make sure that some stuff look ok
        assert not isinstance(loss, list)

        # We need to create two more inputs
        #   1. the targets
        #   2. the predicted scores
        y_true = Input(shape=output_shape)
        pred_score = Input(shape=(reweighting.weight_size,))

        # Create a loss layer and a score layer
        loss_tensor = LossLayer(loss)([y_true, model.output])
        last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
        score_tensor = _get_scoring_layer(
            score,
            y_true,
            model.output,
            loss,
            model.layers[last_layer]
        )

        # Create the sample weights
        weights = reweighting.weight_layer()([score_tensor, pred_score])

        # Create the output
        weighted_loss = multiply([loss_tensor, weights])

        # Create the metric layers
        metrics = model.metrics or []
        metrics = [
            MetricLayer(metric)([y_true, model.output])
            for metric in metrics
        ]

        # Finally build, compile, return
        new_model = TransparentModel(
            inputs=_tolist(model.input) + [y_true, pred_score],
            outputs=[weighted_loss],
            observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
        )
        new_model.compile(
            optimizer=optimizer,
            loss=lambda y_true, y_pred: y_pred
        )

        return new_model
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def _augment_model(self, model, score, reweighting):
        # Extract some info from the model
        loss = model.loss
        optimizer = model.optimizer.__class__(**model.optimizer.get_config())
        output_shape = K.int_shape(model.output)[1:]
        if isinstance(loss, str) and loss.startswith("sparse"):
            output_shape = output_shape[:-1] + (1,)

        # Make sure that some stuff look ok
        assert not isinstance(loss, list)

        # We need to create two more inputs
        #   1. the targets
        #   2. the predicted scores
        y_true = Input(shape=output_shape)
        pred_score = Input(shape=(reweighting.weight_size,))

        # Create a loss layer and a score layer
        loss_tensor = LossLayer(loss)([y_true, model.output])
        last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
        score_tensor = _get_scoring_layer(
            score,
            y_true,
            model.output,
            loss,
            model.layers[last_layer]
        )

        # Create the sample weights
        weights = reweighting.weight_layer()([score_tensor, pred_score])

        # Create the output
        weighted_loss = multiply([loss_tensor, weights])

        # Create the metric layers
        metrics = model.metrics or []
        metrics = [
            MetricLayer(metric)([y_true, model.output])
            for metric in metrics
        ]

        # Finally build, compile, return
        new_model = TransparentModel(
            inputs=_tolist(model.input) + [y_true, pred_score],
            outputs=[weighted_loss],
            observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
        )
        new_model.compile(
            optimizer=optimizer,
            loss=lambda y_true, y_pred: y_pred
        )

        return new_model
项目:bisemantic    作者:wpm    | 项目源码 | 文件源码
def create(cls, classes, maximum_tokens, embedding_size, lstm_units, dropout, bidirectional):
        """
        Create a model that labels semantic relationships between text pairs.

        The text pairs are passed in as two aligned matrices of size
        (batch size, maximum embedding tokens, embedding size). They are generated by TextPairEmbeddingGenerator.

        :param classes: the number of distinct classes to categorize
        :type classes: int
        :param maximum_tokens: maximum number of embedded tokens
        :type maximum_tokens: int
        :param embedding_size: size of the embedding vector
        :type embedding_size: int
        :param lstm_units: number of hidden units in the shared LSTM
        :type lstm_units: int
        :param dropout:  dropout rate or None for no dropout
        :type dropout: float or None
        :param bidirectional: should the shared LSTM be bidirectional?
        :type bidirectional: bool
        :return: the created model
        :rtype: TextPairClassifier
        """
        # Create the model geometry.
        input_shape = (maximum_tokens, embedding_size)
        # Input two sets of aligned text pairs.
        input_1 = Input(input_shape)
        input_2 = Input(input_shape)
        # Apply the same LSTM to each.
        if bidirectional:
            lstm = Bidirectional(LSTM(lstm_units), name="lstm")
        else:
            lstm = LSTM(lstm_units, name="lstm")
        r1 = lstm(input_1)
        r2 = lstm(input_2)
        # Concatenate the embeddings with their product and squared difference.
        p = multiply([r1, r2])
        negative_r2 = Lambda(lambda x: -x)(r2)
        d = add([r1, negative_r2])
        q = multiply([d, d])
        v = [r1, r2, p, q]
        lstm_output = concatenate(v)
        if dropout is not None:
            lstm_output = Dropout(dropout, name="dropout")(lstm_output)
        # A single-layer perceptron maps the concatenated vector to the labels. It has a number of hidden states equal
        # to the square root of the length of the concatenated vector.
        m = sum(t.shape[1].value for t in v)
        perceptron = Dense(math.floor(math.sqrt(m)), activation="relu")(lstm_output)
        logistic_regression = Dense(classes, activation="softmax", name="softmax")(perceptron)
        model = Model([input_1, input_2], logistic_regression, "Text pair classifier")
        model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
        return cls(model)