Python keras.layers 模块,Convolution3D() 实例源码

我们从Python开源项目中,提取了以下38个代码示例,用于说明如何使用keras.layers.Convolution3D()

项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network(input_dim, no_conv_filt, dense_n):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    kern_size = 3

    # conv layers
    seq.add(Convolution3D(no_conv_filt, kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    seq.add(Dropout(.1))
    seq.add(BatchNormalization(mode=2))

    # dense layers
    seq.add(Flatten())
    seq.add(Dense(dense_n, activation='relu'))
    seq.add(BatchNormalization(mode=2))

    return seq


# a network with a couple dense layers
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network(input_dim, no_conv_filt, dense_n):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    kern_size = 3

    # conv layer
    seq.add(Convolution3D(no_conv_filt, kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    #seq.add(Dropout(.1))
    seq.add(BatchNormalization(mode=2))

    # dense layer
    seq.add(Flatten())
    seq.add(Dense(dense_n, activation='relu'))
    seq.add(BatchNormalization(mode=2))

    return seq


# a CNN layer for intensity inputs
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network_small(input_dim, no_conv_filt, dense_n):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    kern_size = 3

    # conv layer
    seq.add(Convolution3D(no_conv_filt, kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    seq.add(Dropout(.2))
    seq.add(BatchNormalization(mode=2))

    # dense layer
    seq.add(Flatten())
    seq.add(Dense(dense_n, activation='relu'))
    seq.add(Dropout(.2))
    seq.add(BatchNormalization(mode=2))

    return seq


# train model given x_train and y_train
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network(input_dim, no_conv_filt, dense_n):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    kern_size = 3

    # conv layer
    seq.add(Convolution3D(no_conv_filt, kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    #seq.add(Dropout(.1))
    seq.add(BatchNormalization(mode=2))

    # dense layer
    seq.add(Flatten())
    seq.add(Dense(dense_n, activation='relu'))
    seq.add(BatchNormalization(mode=2))

    return seq


# a CNN layer for intensity inputs
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network_small(input_dim, no_conv_filt, dense_n):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    kern_size = 3

    # conv layer
    seq.add(Convolution3D(no_conv_filt, kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    seq.add(Dropout(.2))
    seq.add(BatchNormalization(mode=2))

    # dense layer
    seq.add(Flatten())
    seq.add(Dense(dense_n, activation='relu'))
    seq.add(Dropout(.2))
    seq.add(BatchNormalization(mode=2))

    return seq


# train model given x_train and y_train
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:TC-Lung_nodules_detection    作者:Shicoder    | 项目源码 | 文件源码
def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:
    inputs = Input(shape=input_shape, name="input_1")
    x = inputs
    #x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
    x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)

    # 2nd layer group
    x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
    #if USE_DROPOUT:
     #   x = Dropout(p=0.3)(x)

    # 3rd layer group
    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
    #if USE_DROPOUT:
     #   x = Dropout(p=0.4)(x)

    # 4th layer group
    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
    #if USE_DROPOUT:
     #   x = Dropout(p=0.5)(x)

    last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)
    out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
    out_class = Flatten(name="out_class")(out_class)

    out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)
    out_malignancy = Flatten(name="out_malignancy")(out_malignancy)

    model = Model(input=inputs, output=[out_class, out_malignancy])
    if load_weight_path is not None:
        model.load_weights(load_weight_path, by_name=False)
    #model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})
    model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy"}, metrics={"out_class": [binary_accuracy, binary_crossentropy]})
    if features:
        model = Model(input=inputs, output=[last64])
    model.summary(line_length=140)

    return model
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def define_model(image_shape):
    img_input = Input(shape=image_shape)

    x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input)

    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)

    x = res_block(x, nb_filters=32, block=1, subsample_factor=2)
    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)

    x = res_block(x, nb_filters=64, block=2, subsample_factor=2)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)

    x = res_block(x, nb_filters=128, block=3, subsample_factor=2)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)

    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)

    x = AveragePooling3D(pool_size=(4, 4, 8))(x)
    x = Flatten()(x)
    x = Dense(1, activation='sigmoid', name='predictions')(x)

    model = Model(img_input, x)
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure'])
    model.summary()
    return model
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def define_model(image_shape):
    img_input = Input(shape=image_shape)

    x = Convolution3D(16, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(img_input)

    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)

    x = res_block(x, nb_filters=32, block=1, subsample_factor=2)
    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)

    x = res_block(x, nb_filters=64, block=2, subsample_factor=2)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)

    x = res_block(x, nb_filters=128, block=3, subsample_factor=2)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)

    x = res_block(x, nb_filters=256, block=4, subsample_factor=2)
    x = res_block(x, nb_filters=256, block=4, subsample_factor=1)
    x = res_block(x, nb_filters=256, block=4, subsample_factor=1)
    x = res_block(x, nb_filters=256, block=4, subsample_factor=1)

    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)

    x = AveragePooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2), border_mode='valid')(x)
    x = Flatten()(x)
    x = Dense(1, activation='sigmoid', name='predictions')(x)

    model = Model(img_input, x)
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure'])
    model.summary()
    return model
项目:kaggle-lung-cancer    作者:mdai    | 项目源码 | 文件源码
def define_model():
    img_input = Input(shape=(32, 32, 64, 1))

    x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input)

    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)

    x = res_block(x, nb_filters=32, block=1, subsample_factor=2)
    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)

    x = res_block(x, nb_filters=64, block=2, subsample_factor=2)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)

    x = res_block(x, nb_filters=128, block=3, subsample_factor=2)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)

    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)

    x = AveragePooling3D(pool_size=(4, 4, 8))(x)
    x = Flatten()(x)
    x = Dense(1, activation='sigmoid', name='predictions')(x)

    model = Model(img_input, x)
    model.compile(optimizer='adam', loss='binary_crossentropy')

    return model
项目:kaggle_ndsb2017    作者:juliandewit    | 项目源码 | 文件源码
def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:
    inputs = Input(shape=input_shape, name="input_1")
    x = inputs
    x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
    x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)

    # 2nd layer group
    x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
    if USE_DROPOUT:
        x = Dropout(p=0.3)(x)

    # 3rd layer group
    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
    if USE_DROPOUT:
        x = Dropout(p=0.4)(x)

    # 4th layer group
    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
    if USE_DROPOUT:
        x = Dropout(p=0.5)(x)

    last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)
    out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
    out_class = Flatten(name="out_class")(out_class)

    out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)
    out_malignancy = Flatten(name="out_malignancy")(out_malignancy)

    model = Model(input=inputs, output=[out_class, out_malignancy])
    if load_weight_path is not None:
        model.load_weights(load_weight_path, by_name=False)
    model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})

    if features:
        model = Model(input=inputs, output=[last64])
    model.summary(line_length=140)

    return model
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network(input_dim):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    nb_filter = [12, 6]
    kern_size = 3

    # conv layers
    seq.add(Convolution3D(nb_filter[0], kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    # seq.add(MaxPooling3D(pool_size=(2, 2, 2)))  # downsample
    seq.add(Dropout(.25))

    # conv layer 2
    # seq.add(Convolution3D(nb_filter[1], kern_size, kern_size, kern_size, border_mode='valid', dim_ordering='th',
    #                       activation='relu'))
    # # seq.add(MaxPooling3D(pool_size=(2, 2, 2), dim_ordering='th'))  # downsample
    # seq.add(Dropout(.25))

    # dense layers
    seq.add(Flatten())
    seq.add(Dense(100, activation='relu'))
    seq.add(Dropout(0.2))
    seq.add(Dense(50, activation='relu'))
    return seq

# load data
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network(input_dim):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()
    nb_filter = [12, 6]
    kern_size = 3

    # conv layers
    seq.add(Convolution3D(nb_filter[0], kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    # seq.add(MaxPooling3D(pool_size=(2, 2, 2)))  # downsample
    seq.add(Dropout(.25))

    # conv layer 2
    seq.add(Convolution3D(nb_filter[1], kern_size, kern_size, kern_size, border_mode='same', dim_ordering='th',
                          activation='relu'))
    # seq.add(MaxPooling3D(pool_size=(2, 2, 2), dim_ordering='th'))  # downsample
    seq.add(Dropout(.25))

    # dense layers
    seq.add(Flatten())
    seq.add(Dense(100, activation='relu'))
    seq.add(Dropout(0.1))
    seq.add(Dense(50, activation='relu'))
    return seq

# load data
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def create_cnn_network(input_dim):
    '''Base network to be shared (eq. to feature extraction).
    '''
    seq = Sequential()

    # conv layers
    kern_size = 3
    seq.add(Convolution3D(5, kern_size, kern_size, kern_size, input_shape=input_dim,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    seq.add(Dropout(.25))
    seq.add(BatchNormalization(mode=2))

    kern_size = 3
    seq.add(Convolution3D(15, kern_size, kern_size, kern_size,
                          border_mode='valid', dim_ordering='th', activation='relu'))
    seq.add(Dropout(.25))
    seq.add(BatchNormalization(mode=2))

    # dense layers
    seq.add(Flatten())
    seq.add(Dense(50, activation='relu'))
    seq.add(Dropout(.25))
    seq.add(BatchNormalization(mode=2))
    return seq

# load data
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
项目:cocktail-party    作者:avivga    | 项目源码 | 文件源码
def build(video_shape, audio_spectrogram_size):
        model = Sequential()

        model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero1', input_shape=video_shape))
        model.add(Convolution3D(32, (3, 5, 5), strides=(1, 2, 2), kernel_initializer='he_normal', name='conv1'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max1'))
        model.add(Dropout(0.25))

        model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero2'))
        model.add(Convolution3D(64, (3, 5, 5), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv2'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max2'))
        model.add(Dropout(0.25))

        model.add(ZeroPadding3D(padding=(1, 1, 1), name='zero3'))
        model.add(Convolution3D(128, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv3'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max3'))
        model.add(Dropout(0.25))

        model.add(TimeDistributed(Flatten(), name='time'))

        model.add(Dense(1024, kernel_initializer='he_normal', name='dense1'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(Dropout(0.25))

        model.add(Dense(1024, kernel_initializer='he_normal', name='dense2'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(Dropout(0.25))

        model.add(Flatten())

        model.add(Dense(2048, kernel_initializer='he_normal', name='dense3'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(Dropout(0.25))

        model.add(Dense(2048, kernel_initializer='he_normal', name='dense4'))
        model.add(BatchNormalization())
        model.add(LeakyReLU())
        model.add(Dropout(0.25))

        model.add(Dense(audio_spectrogram_size, name='output'))

        model.summary()

        return VideoToSpeechNet(model)
项目:ecogdeep    作者:nancywang1991    | 项目源码 | 文件源码
def ecog_3d_model(channels=None, weights=None):

    input_tensor = Input(shape=(1,8,8, 1000))
    # Block 1
    x = AveragePooling3D((1, 1, 5), name='pre_pool')(input_tensor)
    x = Convolution3D(4, 2, 2, 3, border_mode='same', name='block1_conv1')(x)
    # x = BatchNormalization(axis=1)(x)
    x = Activation('relu')(x)
    x = MaxPooling3D((2, 2, 3), name='block1_pool')(x)

    # Block 2
    x = Convolution3D(8, 2, 2, 3, border_mode='same', name='block2_conv1')(x)
    # x = BatchNormalization(axis=1)(x)
    x = Activation('relu')(x)
    x = MaxPooling3D(( 1, 1, 3), name='block2_pool')(x)

    # Block 3
    x = Convolution3D(16, 2,2, 3, border_mode='same', name='block3_conv1')(x)
    # x = BatchNormalization(axis=1)(x)
    x = Activation('relu')(x)
    x = MaxPooling3D((1, 1, 2), name='block3_pool')(x)

    # Block 4
    # x = Convolution2D(32, 1, 3, border_mode='same', name='block4_conv1')(x)
    # x = BatchNormalization(axis=1)(x)
    # x = Activation('relu')(x)
    # x = MaxPooling2D((1, 2), name='block4_pool')(x)

    x = Flatten(name='flatten')(x)
    x = Dropout(0.5)(x)
    x = Dense(64, W_regularizer=l2(0.01), name='fc1')(x)
    #x = BatchNormalization()(x)
    #x = Activation('relu')(x)
    #x = Dropout(0.5)(x)
    #x = Dense(1, name='predictions')(x)
    # x = BatchNormalization()(x)
    predictions = Activation('sigmoid')(x)

    # for layer in base_model.layers[:10]:
    #    layer.trainable = False
    model = Model(input=input_tensor, output=predictions)
    if weights is not None:
        model.load_weights(weights)

    return model