Python keras.objectives 模块,get() 实例源码

我们从Python开源项目中,提取了以下18个代码示例,用于说明如何使用keras.objectives.get()

项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def keras_wrap(model, target, output, loss):
    """ Convenience function for wrapping a Keras loss function.
    """
    # pylint: disable=import-error
    import keras.objectives as O
    import keras.backend as K
    # pylint: enable=import-error
    if isinstance(loss, str):
        loss = O.get(loss)
    shape = model.outputs[target].value._keras_shape # pylint: disable=protected-access
    ins = [
        (target, K.placeholder(
            ndim=len(shape),
            dtype=K.dtype(model.outputs[target].value),
            name=target
        ))
    ]
    out = loss(ins[0][1], output)
    return ins, out

###############################################################################
项目:kur    作者:deepgram    | 项目源码 | 文件源码
def keras_wrap(model, target, output, loss):
    """ Convenience function for wrapping a Keras loss function.
    """
    # pylint: disable=import-error
    import keras.objectives as O
    import keras.backend as K
    # pylint: enable=import-error
    if isinstance(loss, str):
        loss = O.get(loss)
    shape = model.outputs[target].value._keras_shape # pylint: disable=protected-access
    ins = [
        (target, K.placeholder(
            ndim=len(shape),
            dtype=K.dtype(model.outputs[target].value),
            name=target
        ))
    ]
    out = loss(ins[0][1], output)
    return ins, out

###############################################################################
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def test_loss_masking_time(self):
        theano.config.mode = 'FAST_COMPILE'
        weighted_loss = weighted_objective(objectives.get('categorical_crossentropy'))
        shape = (3, 4, 2)
        X = np.arange(24).reshape(shape)
        Y = 2 * X

        weights = np.ones((3, 4, 1))  # Normally the trailing 1 is added by standardize_weights
        weights[0, 0] = 0
        mask = np.ones((3, 4))
        mask[1, 0] = 0

        out = weighted_loss(X, Y, weights, mask).eval()
        weights[0, 0] = 1e-9  # so that nonzero() doesn't remove this weight
        out2 = weighted_loss(X, Y, weights, mask).eval()
        print(out)
        print(out2)
        assert abs(out - out2) < 1e-8
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_loss_masking():
    weighted_loss = weighted_objective(objectives.get('mae'))
    shape = (3, 4, 2)
    X = np.arange(24).reshape(shape)
    Y = 2 * X

    # Normally the trailing 1 is added by standardize_weights
    weights = np.ones((3,))
    mask = np.ones((3, 4))
    mask[1, 0] = 0

    out = K.eval(weighted_loss(K.variable(X),
                               K.variable(Y),
                               K.variable(weights),
                               K.variable(mask)))
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, loss, **kwargs):
        self.supports_masking = True
        self.loss = objectives.get(loss)

        super(LossLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, parameter_list, loss, fast=False, **kwargs):
        self.supports_masking = True
        self.parameter_list = parameter_list
        self.loss = objectives.get(loss)
        self.fast = fast

        super(GradientNormLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def compute_output_shape(self, input_shape):
        # We get two inputs
        assert len(input_shape) == 2

        return (input_shape[0][0], 1)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, loss, **kwargs):
        self.supports_masking = True
        self.loss = objectives.get(loss)

        super(LossLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, parameter_list, loss, fast=False, **kwargs):
        self.supports_masking = True
        self.parameter_list = parameter_list
        self.loss = objectives.get(loss)
        self.fast = fast

        super(GradientNormLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, loss, **kwargs):
        self.supports_masking = True
        self.loss = objectives.get(loss)

        super(LossLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, parameter_list, loss, fast=False, **kwargs):
        self.supports_masking = True
        self.parameter_list = parameter_list
        self.loss = objectives.get(loss)
        self.fast = fast

        super(GradientNormLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def compute_output_shape(self, input_shape):
        # We get two inputs
        assert len(input_shape) == 2

        return (input_shape[0][0], 1)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, loss, **kwargs):
        self.supports_masking = True
        self.loss = objectives.get(loss)

        super(LossLayer, self).__init__(**kwargs)
项目:importance-sampling    作者:idiap    | 项目源码 | 文件源码
def __init__(self, parameter_list, loss, fast=False, **kwargs):
        self.supports_masking = True
        self.parameter_list = parameter_list
        self.loss = objectives.get(loss)
        self.fast = fast

        super(GradientNormLayer, self).__init__(**kwargs)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_loss_masking():
    weighted_loss = weighted_objective(objectives.get('mae'))
    shape = (3, 4, 2)
    X = np.arange(24).reshape(shape)
    Y = 2 * X

    # Normally the trailing 1 is added by standardize_weights
    weights = np.ones((3,))
    mask = np.ones((3, 4))
    mask[1, 0] = 0

    out = K.eval(weighted_loss(K.variable(X),
                               K.variable(Y),
                               K.variable(weights),
                               K.variable(mask)))
项目:X    作者:EderSantana    | 项目源码 | 文件源码
def compile(self, state_dim_values, lr=0.2, policy_rule="maxrand", init_value=None):
        """Build and initialize table with all possible state values.
           state_dim_values consists of a tuple of arrays or lists - each array
           gives every possible value for the corresponding dimension.
        """

        self.policy_rule = policies.get(policy_rule)

        if init_value is None:
            self.init_value = np.zeros(self.num_actions)
        else:
            self.init_value = init_value

        self.table = {key: np.array(self.init_value) for key in list(itertools.product(*state_dim_values))}
        self.lr = lr
项目:X    作者:EderSantana    | 项目源码 | 文件源码
def values(self, observation):
        if observation.ndim == 1:
            vals = self.table[tuple(observation)]
        else:
            obs_tuple = tuple(map(tuple, observation))  # convert to tuple of tuples
            vals = map(self.table.__getitem__, obs_tuple)  # get values from dict as list of arrays
        vals = np.asarray(vals)  # convert list of arrays to matrix (2-d array)
        return vals
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_loss_masking():
    weighted_loss = weighted_objective(objectives.get('mae'))
    shape = (3, 4, 2)
    X = np.arange(24).reshape(shape)
    Y = 2 * X

    # Normally the trailing 1 is added by standardize_weights
    weights = np.ones((3,))
    mask = np.ones((3, 4))
    mask[1, 0] = 0

    out = K.eval(weighted_loss(K.variable(X),
                               K.variable(Y),
                               K.variable(weights),
                               K.variable(mask)))