我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用keras.preprocessing.text.one_hot()。
def test_one_hot(): text = 'The cat sat on the mat.' encoded = one_hot(text, 5) assert len(encoded) == 6 assert np.max(encoded) <= 4 assert np.min(encoded) >= 0
def to_one_hot_array(self, string_list, max_index= 256): """Transform list of input strings into numpy array of zero-padded one-hot (index) encodings.""" self.max_index = max_index x_one_hot = [one_hot(" ".join(list(sentence)), n = max_index) for sentence in string_list] self.max_len = max([len(s) for s in x_one_hot]) X = np.array(pad_sequences(x_one_hot, maxlen=self.max_len)) self.relevant_indices = np.unique(X) charset = set(list(" ".join(string_list))) self.charset = charset encoding = one_hot(" ".join(charset),n=max_index) self.charset_map = dict(zip(charset,encoding) ) self.inv_charset_map = dict(zip(encoding, charset) ) return X
def lstm_predict(filename, content) : print(content) model_input = sequence.pad_sequences([one_hot(str(content), 5000)], 1000) model = load_model(filename) prediction = model.predict(model_input) return prediction.tolist()[0][0]
def one_hot(word_model, n): return text.one_hot( word_model, n, filters=text_filter(), lower=False, split=" ")
def to_one_hot(self, input_str,max_index=256, padding_length=30): """Transform single input string into zero-padded one-hot (index) encoding.""" input_one_hot = one_hot(" ".join(list(input_str)), n = max_index) return pad_sequences([input_one_hot], maxlen=padding_length)
def getFeatureMatrix(self, df): if cfg.input_type == "text": from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences textconverter = lambda x: x if sys.version_info[0] == 2: textconverter = lambda x: x.encode("utf-8") X = pad_sequences( df.apply(lambda row: one_hot(textconverter(row[self.text_field]), self.vocabulary_size), axis=1), self.word_limit) self.fields = [cfg.text_field] self.input_shape = (self.word_limit,) elif self.objective == "time_series": num_series = 1+len(self.fields) data = [df[self.target].tolist()] num_rows = len(data[0]) for field in self.fields: data.append(df[field].tolist()) instances = [] target_instances = [] for index in range(num_rows - (self.window_size+1)): windows = [] for windex in range(self.window_size): series = [] for sindex in range(num_series): series.append(data[sindex][index+windex]) windows.append(series) target_window = [] for sindex in range(num_series): target_window.append(data[sindex][index + self.window_size]) instances.append(windows) target_instances.append(target_window) X = np.array(instances) self.seqtargets = np.array(target_instances) X = np.reshape(X, (X.shape[0], self.window_size, num_series)) print(X.shape) self.input_shape = (self.window_size, num_series) else: X = df.as_matrix(self.fields) self.input_shape = (len(self.fields),) self.model_metadata["predictors"] = self.fields return X