我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用keras.engine()。
def get_batch(X, start=None, stop=None): """Like keras.engine.training.slice_X, but supports latent vectors. Args: X: Numpy array or list of Numpy arrays. start: integer, the start of the batch, or a list of integers, the indices of each sample in to use in this batch. stop: integer, the end of the batch (only needed if start is an integer). Returns: X[start:stop] if X is array-like, or [x[start:stop] for x in X] if X is a list. Latent vector functions will be called as appropriate. """ if isinstance(X, list): if hasattr(start, '__len__'): if hasattr(start, 'shape'): start = start.tolist() return [x[start] if is_numpy_array(x) else x(len(start)) for x in X] else: return [x[start:stop] if is_numpy_array(x) else x(stop - start) for x in X] else: if hasattr(start, '__len__'): if hasattr(start, 'shape'): start = start.tolist() return (X[start] if is_numpy_array(X) else X(len(start))) else: return (X[start:stop] if is_numpy_array(X) else X(stop - start))