Python lasagne.layers 模块,DenseLayer() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用lasagne.layers.DenseLayer()

项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _set_inverse_parameters(self, patterns=None):
        self.trainable_layers = [self.inverse_map[l]
                                 for l in L.get_all_layers(self.output_layer)
                                 if type(l) in [L.Conv2DLayer, L.DenseLayer]]
        if patterns is not None:
            if type(patterns) is list:
                patterns = patterns[0]
            for i,layer in enumerate(self.trainable_layers):
                pattern = patterns['A'][i]
                if pattern.ndim == 4:
                    pattern = pattern.transpose(1,0,2,3)
                elif pattern.ndim == 2:
                    pattern = pattern.T
                layer.W.set_value(pattern)
        else:
            print("Patterns not given, explanation is random.")
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_rnn(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    layer_rnn = RecurrentLayer(layer_input, num_units, nonlinearity=nonlinearities.tanh, only_return_final=True,
                               W_in_to_hid=lasagne.init.GlorotUniform(), W_hid_to_hid=lasagne.init.GlorotUniform(),
                               b=lasagne.init.Constant(0.), name='RNN')
    # W = layer_rnn.W_hid_to_hid.sum()
    # U = layer_rnn.W_in_to_hid.sum()
    # b = layer_rnn.b.sum()

    layer_output = DenseLayer(layer_rnn, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_rnn, input_var, target_var, batch_size, length, position, binominal)
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    print ("critic output:", layer.output_shape)
    return layer
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_critic(input_var=None, verbose=False):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify, sigmoid
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 3, 32, 32), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 256, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 512, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # # fully-connected layer
    # layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    if verbose: print ("critic output:", layer.output_shape)
    return layer
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear and without bias)
    layer = DenseLayer(layer, 1, nonlinearity=None, b=None)
    print ("critic output:", layer.output_shape)
    return layer
项目:deep_learning    作者:Vict0rSch    | 项目源码 | 文件源码
def build_mlp(input_var=None):
    l_in = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)

    l_hid1 = DenseLayer(
            l_in, num_units=500,
            nonlinearity=rectify,
            W=lasagne.init.GlorotUniform())
    l_hid1_drop = DropoutLayer(l_hid1, p=0.4)

    l_hid2 = DenseLayer(
            l_hid1_drop, num_units=300,
            nonlinearity=rectify)
    l_hid2_drop = DropoutLayer(l_hid2, p=0.4)

    l_out = DenseLayer(
            l_hid2_drop, num_units=10,
            nonlinearity=softmax)

    return l_out


# generator giving the batches
项目:deep_learning    作者:Vict0rSch    | 项目源码 | 文件源码
def build_model(input_var=None):

    layers = [1, 5, 10, 1]

    l_in = InputLayer((None, None, layers[0]),
                      input_var=input_var)

    l_lstm1 = LSTMLayer(l_in, layers[1])
    l_lstm1_dropout = DropoutLayer(l_lstm1, p=0.2)

    l_lstm2 = LSTMLayer(l_lstm1_dropout, layers[2])
    l_lstm2_dropout = DropoutLayer(l_lstm2, p=0.2)

    # The objective of this task depends only on the final value produced by
    # the network.  So, we'll use SliceLayers to extract the LSTM layer's
    # output after processing the entire input sequence.  For the forward
    # layer, this corresponds to the last value of the second (sequence length)
    # dimension.
    l_slice = SliceLayer(l_lstm2_dropout, -1, 1)

    l_out = DenseLayer(l_slice, 1, nonlinearity=lasagne.nonlinearities.linear)

    return l_out
项目:deep_learning    作者:Vict0rSch    | 项目源码 | 文件源码
def build_model(input_var=None):

    layers = [1, 5, 10, 1]

    l_in = InputLayer((None, None, layers[0]),
                      input_var=input_var)

    l_lstm1 = LSTMLayer(l_in, layers[1])
    l_lstm1_dropout = DropoutLayer(l_lstm1, p=0.2)

    l_lstm2 = LSTMLayer(l_lstm1_dropout, layers[2])
    l_lstm2_dropout = DropoutLayer(l_lstm2, p=0.2)

    # The objective of this task depends only on the final value produced by
    # the network.  So, we'll use SliceLayers to extract the LSTM layer's
    # output after processing the entire input sequence.  For the forward
    # layer, this corresponds to the last value of the second (sequence length)
    # dimension.
    l_slice = SliceLayer(l_lstm2_dropout, -1, 1)

    l_out = DenseLayer(l_slice, 1, nonlinearity=lasagne.nonlinearities.linear)

    return l_out
项目:Cascade-CNN-Face-Detection    作者:gogolgrind    | 项目源码 | 文件源码
def __build_48_net__(self):
        network = layers.InputLayer((None, 3, 48, 48), input_var=self.__input_var__)

        network = layers.Conv2DLayer(network,num_filters=64,filter_size=(5,5),stride=1,nonlinearity=relu)
        network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)        
        network = layers.batch_norm(network)

        network = layers.Conv2DLayer(network,num_filters=64,filter_size=(5,5),stride=1,nonlinearity=relu)
        network = layers.batch_norm(network)
        network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)

        network = layers.Conv2DLayer(network,num_filters=64,filter_size=(3,3),stride=1,nonlinearity=relu)
        network = layers.batch_norm(network)
        network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)

        network = layers.DenseLayer(network,num_units = 256,nonlinearity = relu)
        network = layers.DenseLayer(network,num_units = 2, nonlinearity = softmax)
        return network
项目:seq2seq-lasagne    作者:erfannoury    | 项目源码 | 文件源码
def test_lnlstm_nparams_hid_init_layer():
    # test that you can see layers through hid_init
    l_inp = InputLayer((2, 2, 3))
    l_inp_h = InputLayer((2, 5))
    l_inp_h_de = DenseLayer(l_inp_h, 7)
    l_inp_cell = InputLayer((2, 5))
    l_inp_cell_de = DenseLayer(l_inp_cell, 7)
    l_lstm = LNLSTMLayer(l_inp, 7, hid_init=l_inp_h_de, cell_init=l_inp_cell_de)

    # directly check the layers can be seen through hid_init
    layers_to_find = [l_inp, l_inp_h, l_inp_h_de, l_inp_cell, l_inp_cell_de,
                      l_lstm]
    assert lasagne.layers.get_all_layers(l_lstm) == layers_to_find

    # 7*n_gates + 3*n_peepholes + 4
    # the 7 is because we have  hid_to_gate, in_to_gate and bias and 
    # layer normalization for each gate
    # 4 is for the W and b parameters in the two DenseLayer layers
    print lasagne.layers.get_all_params(l_lstm, trainable=True)
    assert len(lasagne.layers.get_all_params(l_lstm, trainable=True)) == 37

    # LSTM bias params(4) + LN betas(2*#gate) (+ Dense bias params(1) * 2
    assert len(lasagne.layers.get_all_params(l_lstm, regularizable=False)) == 15
项目:seq2seq-lasagne    作者:erfannoury    | 项目源码 | 文件源码
def test_lstm_nparams_hid_init_layer():
    # test that you can see layers through hid_init
    l_inp = InputLayer((2, 2, 3))
    l_inp_h = InputLayer((2, 5))
    l_inp_h_de = DenseLayer(l_inp_h, 7)
    l_inp_cell = InputLayer((2, 5))
    l_inp_cell_de = DenseLayer(l_inp_cell, 7)
    l_lstm = LSTMLayer(l_inp, 7, hid_init=l_inp_h_de, cell_init=l_inp_cell_de)

    # directly check the layers can be seen through hid_init
    layers_to_find = [l_inp, l_inp_h, l_inp_h_de, l_inp_cell, l_inp_cell_de,
                      l_lstm]
    assert lasagne.layers.get_all_layers(l_lstm) == layers_to_find

    # 3*n_gates + 4
    # the 3 is because we have  hid_to_gate, in_to_gate and bias for each gate
    # 4 is for the W and b parameters in the two DenseLayer layers
    assert len(lasagne.layers.get_all_params(l_lstm, trainable=True)) == 19

    # GRU bias params(3) + Dense bias params(1) * 2
    assert len(lasagne.layers.get_all_params(l_lstm, regularizable=False)) == 6
项目:adda_mnist64    作者:davidtellez    | 项目源码 | 文件源码
def network_classifier(self, input_var):

        network = {}
        network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input')
        network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1')
        network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1')
        network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2')
        network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2')
        network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3')
        network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3')
        network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4')
        network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4')
        network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1')
        network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output')

        return network
项目:WGAN_mnist    作者:rajeswar18    | 项目源码 | 文件源码
def discriminator(input_var):
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)

    network = ll.DropoutLayer(network, p=0.5)

    network = nn.weight_norm(dnn.Conv2DDNNLayer(network, 64, (4,4), pad='valid', W=Normal(0.05), nonlinearity=nn.lrelu))

    network = nn.weight_norm(dnn.Conv2DDNNLayer(network, 32, (5,5), stride=2, pad='valid', W=Normal(0.05), nonlinearity=nn.lrelu))
    network = nn.weight_norm(dnn.Conv2DDNNLayer(network, 32, (5,5), pad='valid', W=Normal(0.05), nonlinearity=nn.lrelu))

    network = nn.weight_norm(dnn.Conv2DDNNLayer(network, 32, (5,5), pad='valid', W=Normal(0.05), nonlinearity=nn.lrelu))

    network = nn.weight_norm(dnn.Conv2DDNNLayer(network, 16, (3,3), pad='valid', W=Normal(0.05), nonlinearity=nn.lrelu))

    network =nn.weight_norm(ll.DenseLayer(network, num_units=1, W=Normal(0.05), nonlinearity=None), train_g=True, init_stdv=0.1)




    return network
项目:WGAN_mnist    作者:rajeswar18    | 项目源码 | 文件源码
def generator(input_var):
    network = lasagne.layers.InputLayer(shape=(None, NLAT,1,1),
                                        input_var=input_var)

    network = ll.DenseLayer(network, num_units=4*4*64, W=Normal(0.05), nonlinearity=nn.relu)
    #print(input_var.shape[0])
    network = ll.ReshapeLayer(network, (batch_size,64,4,4))
    network = nn.Deconv2DLayer(network, (batch_size,32,7,7), (4,4), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
    network = nn.Deconv2DLayer(network, (batch_size,32,11,11), (5,5), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
    network = nn.Deconv2DLayer(network, (batch_size,32,25,25), (5,5), stride=(2,2), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
    network = nn.Deconv2DLayer(network, (batch_size,1,28,28), (4,4), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=sigmoid)

    #network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1, nonlinearity=sigmoid)
    return network

# In[23]:
项目:ConvolutionalAutoEncoder    作者:ToniCreswell    | 项目源码 | 文件源码
def build_net(nz=10):
    # nz = size of latent code
    #N.B. using batch_norm applies bn before non-linearity!
    F=32
    enc = InputLayer(shape=(None,1,28,28))
    enc = Conv2DLayer(incoming=enc, num_filters=F*2, filter_size=5,stride=2, nonlinearity=lrelu(0.2),pad=2)
    enc = Conv2DLayer(incoming=enc, num_filters=F*4, filter_size=5,stride=2, nonlinearity=lrelu(0.2),pad=2)
    enc = Conv2DLayer(incoming=enc, num_filters=F*4, filter_size=5,stride=1, nonlinearity=lrelu(0.2),pad=2)
    enc = reshape(incoming=enc, shape=(-1,F*4*7*7))
    enc = DenseLayer(incoming=enc, num_units=nz, nonlinearity=sigmoid)
    #Generator networks
    dec = InputLayer(shape=(None,nz))
    dec = DenseLayer(incoming=dec, num_units=F*4*7*7)
    dec = reshape(incoming=dec, shape=(-1,F*4,7,7))
    dec = Deconv2DLayer(incoming=dec, num_filters=F*4, filter_size=4, stride=2, nonlinearity=relu, crop=1)
    dec = Deconv2DLayer(incoming=dec, num_filters=F*4, filter_size=4, stride=2, nonlinearity=relu, crop=1)
    dec = Deconv2DLayer(incoming=dec, num_filters=1, filter_size=3, stride=1, nonlinearity=sigmoid, crop=1)

    return enc, dec
项目:twitter_caption    作者:tencia    | 项目源码 | 文件源码
def build_rnn(conv_input_var, seq_input_var, conv_shape, word_dims, n_hid, lstm_layers):
    ret = {}
    ret['seq_input'] = seq_layer = InputLayer((None, None, word_dims), input_var=seq_input_var)
    batchsize, seqlen, _ = seq_layer.input_var.shape
    ret['seq_resh'] = seq_layer = ReshapeLayer(seq_layer, shape=(-1, word_dims))
    ret['seq_proj'] = seq_layer = DenseLayer(seq_layer, num_units=n_hid)
    ret['seq_resh2'] = seq_layer = ReshapeLayer(seq_layer, shape=(batchsize, seqlen, n_hid))
    ret['conv_input'] = conv_layer = InputLayer(conv_shape, input_var = conv_input_var)
    ret['conv_proj'] = conv_layer = DenseLayer(conv_layer, num_units=n_hid)
    ret['conv_resh'] = conv_layer = ReshapeLayer(conv_layer, shape=([0], 1, -1))
    ret['input_concat'] = layer = ConcatLayer([conv_layer, seq_layer], axis=1)
    for lstm_layer_idx in xrange(lstm_layers):
        ret['lstm_{}'.format(lstm_layer_idx)] = layer = LSTMLayer(layer, n_hid)
    ret['out_resh'] = layer = ReshapeLayer(layer, shape=(-1, n_hid))
    ret['output_proj'] = layer = DenseLayer(layer, num_units=word_dims, nonlinearity=log_softmax)
    ret['output'] = layer = ReshapeLayer(layer, shape=(batchsize, seqlen+1, word_dims))
    ret['output'] = layer = SliceLayer(layer, indices=slice(None, -1), axis=1)
    return ret

# originally from
# https://github.com/Lasagne/Recipes/blob/master/examples/styletransfer/Art%20Style%20Transfer.ipynb
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=adadelta,
        update_learning_rate=0.01,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=adadelta,
        update_learning_rate=0.01,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def build_encoder_layers(input_size, encode_size, sigma=0.5):
    """
    builds an autoencoder with gaussian noise layer
    :param input_size: input size
    :param encode_size: encoded size
    :param sigma: gaussian noise standard deviation
    :return: Weights of encoder layer, denoising autoencoder layer
    """
    W = theano.shared(GlorotUniform().sample(shape=(input_size, encode_size)))

    layers = [
        (InputLayer, {'shape': (None, input_size)}),
        (GaussianNoiseLayer, {'name': 'corrupt', 'sigma': sigma}),
        (DenseLayer, {'name': 'encoder', 'num_units': encode_size, 'nonlinearity': sigmoid, 'W': W}),
        (DenseLayer, {'name': 'decoder', 'num_units': input_size, 'nonlinearity': linear, 'W': W.T}),
    ]
    return W, layers
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
项目:aenet    作者:znaoya    | 项目源码 | 文件源码
def build_model(self):
        '''
        Build Acoustic Event Net model
        :return:
        '''

        # A architecture 41 classes
        nonlin = lasagne.nonlinearities.rectify
        net = {}
        net['input'] = InputLayer((None, feat_shape[0], feat_shape[1], feat_shape[2]))  # channel, time. frequency
        # ----------- 1st layer group ---------------
        net['conv1a'] = ConvLayer(net['input'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv1b'] = ConvLayer(net['conv1a'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool1'] = MaxPool2DLayer(net['conv1b'], pool_size=(1, 2))  # (time, freq)
        # ----------- 2nd layer group ---------------
        net['conv2a'] = ConvLayer(net['pool1'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv2b'] = ConvLayer(net['conv2a'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool2'] = MaxPool2DLayer(net['conv2b'], pool_size=(2, 2))  # (time, freq)
        # ----------- fully connected layer group ---------------
        net['fc5'] = DenseLayer(net['pool2'], num_units=1024, nonlinearity=nonlin)
        net['fc6'] = DenseLayer(net['fc5'], num_units=1024, nonlinearity=nonlin)
        net['prob'] = DenseLayer(net['fc6'], num_units=41, nonlinearity=lasagne.nonlinearities.softmax)

        return net
项目:RL4Data    作者:fyabc    | 项目源码 | 文件源码
def build_cnn(self):
        # Building the network
        layer_in = InputLayer(shape=(None, 784), input_var=self.input_var)

        # Hidden layer
        layer = DenseLayer(
            layer_in,
            num_units=self.hidden_size,
            W=lasagne.init.Uniform(
                range=(-np.sqrt(6. / (784 + self.hidden_size)),
                       np.sqrt(6. / (784 + self.hidden_size)))),
            nonlinearity=tanh,
        )

        # LR layer
        layer = DenseLayer(
            layer,
            num_units=self.output_size,
            W=lasagne.init.Constant(0.),
            nonlinearity=softmax,
        )

        return layer
项目:crayimage    作者:yandexdataschool    | 项目源码 | 文件源码
def define(self, n_units = 1):
    self.sample_weights = T.fvector(name='weights')
    self.labels = T.fvector(name='labels')
    self.input = T.fmatrix(name='input')

    input_layer = layers.InputLayer(shape=(None , 1), input_var=self.input)

    dense1 = layers.DenseLayer(
      input_layer,
      num_units=n_units,
      nonlinearity=nonlinearities.sigmoid
    )

    self.net = layers.DenseLayer(
      dense1,
      num_units=1,
      nonlinearity=nonlinearities.sigmoid
    )
项目:recom-system    作者:tizot    | 项目源码 | 文件源码
def build_multi_dssm(input_var=None, num_samples=None, num_entries=6, num_ngrams=42**3, num_hid1=300, num_hid2=300, num_out=128):
    """Builds a DSSM structure in a Lasagne/Theano way.

    The built DSSM is the neural network that computes the projection of only one paper.
    The input ``input_var`` should have two dimensions: (``num_samples * num_entries``, ``num_ngrams``).
    The output is then computed in a batch way: one paper at a time, but all papers from the same sample in the dataset are grouped
    (cited papers, citing papers and ``num_entries - 2`` irrelevant papers).

    Args:
        input_var (:class:`theano.tensor.TensorType` or None): symbolic input variable of the DSSM
        num_samples (int): the number of samples in the batch input dataset (number of rows)
        num_entries (int): the number of compared papers in the DSSM structure
        num_ngrams (int): the size of the vocabulary
        num_hid1 (int): the number of units in the first hidden layer
        num_hid2 (int): the number of units in the second hidden layer
        num_out (int): the number of units in the output layer

    Returns:
        :class:`lasagne.layers.Layer`: the output layer of the DSSM
    """

    assert (num_entries > 2)

    # Initialise input layer
    if num_samples is None:
        num_rows = None
    else:
        num_rows = num_samples * num_entries

    l_in = layers.InputLayer(shape=(num_rows, num_ngrams), input_var=input_var)

    # Initialise the hidden and output layers or the DSSM
    l_hid1 = layers.DenseLayer(l_in, num_units=num_hid1, nonlinearity=nonlinearities.tanh, W=init.GlorotUniform())
    l_hid2 = layers.DenseLayer(l_hid1, num_units=num_hid2, nonlinearity=nonlinearities.tanh, W=init.GlorotUniform())
    l_out = layers.DenseLayer(l_hid2, num_units=num_out, nonlinearity=nonlinearities.tanh, W=init.GlorotUniform())

    l_out = layers.ExpressionLayer(l_out, lambda X: X / X.norm(2), output_shape='auto')

    return l_out
项目:kaggle-breast-cancer-prediction    作者:sirCamp    | 项目源码 | 文件源码
def CNN(n_epochs):
    net1 = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv1', layers.Conv2DLayer),  # Convolutional layer.  Params defined below
            ('pool1', layers.MaxPool2DLayer),  # Like downsampling, for execution speed
            ('conv2', layers.Conv2DLayer),
            ('hidden3', layers.DenseLayer),
            ('output', layers.DenseLayer),
        ],

        input_shape=(None, 1, 6, 5),
        conv1_num_filters=8,
        conv1_filter_size=(3, 3),
        conv1_nonlinearity=lasagne.nonlinearities.rectify,

        pool1_pool_size=(2, 2),

        conv2_num_filters=12,
        conv2_filter_size=(1, 1),
        conv2_nonlinearity=lasagne.nonlinearities.rectify,

        hidden3_num_units=1000,
        output_num_units=2,
        output_nonlinearity=lasagne.nonlinearities.softmax,

        update_learning_rate=0.0001,
        update_momentum=0.9,

        max_epochs=n_epochs,
        verbose=0,
    )
    return net1
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _set_inverse_parameters(self, patterns=None):
        for l in L.get_all_layers(self.output_layer):
            if type(l) is L.Conv2DLayer:
                W = l.W.get_value()
                if l.flip_filters:
                    W = W[:,:,::-1,::-1]
                W = W.transpose(1,0,2,3)
                self.inverse_map[l].W.set_value(W)
            elif type(l) is L.DenseLayer:
                self.inverse_map[l].W.set_value(l.W.get_value().T)
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _set_inverse_parameters(self, patterns=None):
        for l in L.get_all_layers(self.output_layer):
            if type(l) is L.Conv2DLayer:
                W = l.W.get_value()
                if l.flip_filters:
                    W = W[:,:,::-1,::-1]
                W = W.transpose(1,0,2,3)
                self.inverse_map[l].W.set_value(W)
            elif type(l) is L.DenseLayer:
                self.inverse_map[l].W.set_value(l.W.get_value().T)
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _get_normalised_relevance_layer(self, layer, feeder):

        def add_epsilon(Zs):
            tmp = (T.cast(Zs >= 0, theano.config.floatX)*2.0 - 1.0)
            return  Zs + self.epsilon * tmp

        if isinstance(layer, L.DenseLayer):
            forward_layer = L.DenseLayer(layer.input_layer,
                                         layer.num_units,
                                         W=layer.W,
                                         b=layer.b,
                                         nonlinearity=None)
        elif isinstance(layer, L.Conv2DLayer):
            forward_layer = L.Conv2DLayer(layer.input_layer,
                                          num_filters=layer.num_filters,
                                          W=layer.W,
                                          b=layer.b,
                                          stride=layer.stride,
                                          filter_size=layer.filter_size,
                                          flip_filters=layer.flip_filters,
                                          untie_biases=layer.untie_biases,
                                          pad=layer.pad,
                                          nonlinearity=None)
        else:
            raise NotImplementedError()

        forward_layer = L.ExpressionLayer(forward_layer,
                                          lambda x: 1.0 / add_epsilon(x))
        feeder = L.ElemwiseMergeLayer([forward_layer, feeder],
                                      merge_function=T.mul)

        return feeder
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _invert_DenseLayer(self,layer,feeder):
        # Warning they are swapped here
        feeder = self._put_rectifiers(feeder, layer)
        feeder = self._get_normalised_relevance_layer(layer, feeder)

        output_units = np.prod(L.get_output_shape(layer.input_layer)[1:])
        output_layer = L.DenseLayer(feeder, num_units=output_units)
        W = output_layer.W
        tmp_shape = np.asarray((-1,)+L.get_output_shape(output_layer)[1:])
        x_layer = L.ReshapeLayer(layer.input_layer, tmp_shape.tolist())
        output_layer = L.ElemwiseMergeLayer(incomings=[x_layer, output_layer],
                                            merge_function=T.mul)
        output_layer.W = W
        return output_layer
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _invert_DenseLayer(self, layer, feeder):
        # Warning they are swapped here
        feeder = self._put_rectifiers(feeder, layer)
        output_units = np.prod(L.get_output_shape(layer.input_layer)[1:])
        output_layer = L.DenseLayer(feeder,
                                    num_units=output_units,
                                    nonlinearity=None, b=None)
        return output_layer
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _invert_layer(self, layer, feeder):
        layer_type = type(layer)

        if L.get_output_shape(feeder) != L.get_output_shape(layer):
            feeder = L.ReshapeLayer(feeder, (-1,)+L.get_output_shape(layer)[1:])
        if layer_type is L.InputLayer:
            return self._invert_InputLayer(layer, feeder)
        elif layer_type is L.FlattenLayer:
            return self._invert_FlattenLayer(layer, feeder)
        elif layer_type is L.DenseLayer:
            return self._invert_DenseLayer(layer, feeder)
        elif layer_type is L.Conv2DLayer:
            return self._invert_Conv2DLayer(layer, feeder)
        elif layer_type is L.DropoutLayer:
            return self._invert_DropoutLayer(layer, feeder)
        elif layer_type in [L.MaxPool2DLayer, L.MaxPool1DLayer]:
            return self._invert_MaxPoolingLayer(layer, feeder)
        elif layer_type is L.PadLayer:
            return self._invert_PadLayer(layer, feeder)
        elif layer_type is L.SliceLayer:
            return self._invert_SliceLayer(layer, feeder)
        elif layer_type is L.LocalResponseNormalization2DLayer:
            return self._invert_LocalResponseNormalisation2DLayer(layer, feeder)
        elif layer_type is L.GlobalPoolLayer:
            return self._invert_GlobalPoolLayer(layer, feeder)
        else:
            return self._invert_UnknownLayer(layer, feeder)
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _collect_layers(self):
        self.all_layers = L.get_all_layers(self.output_layer)
        ret = [l for l in self.all_layers if
                type(l) in [L.DenseLayer, L.Conv2DLayer]]

        return ret
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _get_split(self, layer,
                   deterministic=True, conv_all_patches=True, **kwargs):

        # Get the patches and the outputs without the non-linearities.
        if type(layer) is L.DenseLayer:
            x, y = putils.get_dense_xy(layer, deterministic)
        elif type(layer) is L.Conv2DLayer:
            if conv_all_patches is True:
                x, y = putils.get_conv_xy_all(layer, deterministic)
            else:
                x, y = putils.get_conv_xy(layer, deterministic)
        else:
            raise ValueError("Unknown layer as input")

        # Create an output dictionary
        outputs = dict()

        for name, fun in subtypes:
            outputs[name] = dict()
            mrk_y = 1.0* T.cast(fun(y), dtype=theano.config.floatX)  # (N,O)
            y_current = y*mrk_y # This has a binary mask
            cnt_y = T.shape_padaxis(T.sum(mrk_y, axis=0), axis=0)  # (1,O)
            norm = T.maximum(cnt_y, 1.)

            # Count how many datapoints are considered
            outputs[name]['cnt'] = cnt_y

            # The mean of the current batch
            outputs[name]['m_y'] = T.shape_padaxis(y_current.sum(axis=0), axis=0) / norm  # (1,O) mean output for batch
            outputs[name]['m_x'] = T.dot(x.T, mrk_y) / norm  # (D,O) mean input for batch

            # The mean of the current batch
            outputs[name]['yty'] = T.shape_padaxis(T.sum(y_current ** 2., axis=0), axis=0) / norm  # (1,O)
            outputs[name]['xty'] = T.dot(x.T, y_current) / norm  # D,O

        return dict_to_list(outputs)
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def get_split(self, layer,
                  deterministic=True, conv_all_patches=True, **kwargs):

        # Get the patches and the outputs without the non-linearities.
        if type(layer) is L.DenseLayer:
            x, y = get_dense_xy(layer, deterministic)
        elif type(layer) is L.Conv2DLayer:
            if conv_all_patches is True:
                x, y = get_conv_xy_all(layer, deterministic)
            else:
                x, y = get_conv_xy(layer, deterministic)
        else:
            raise ValueError("Unknown layer as input")

        # Create an output dictionary
        outputs = dict()

        for name, fun in subtypes:
            outputs[name] = dict()
            mrk_y = 1.0* T.cast(fun(y), dtype=theano.config.floatX)  # (N,O)
            y_current = y*mrk_y # This has a binary mask
            cnt_y = T.shape_padaxis(T.sum(mrk_y, axis=0), axis=0)  # (1,O)
            norm = T.maximum(cnt_y, 1.)

            # Count how many datapoints are considered
            outputs[name]['cnt'] = cnt_y

            # The mean of the current batch
            outputs[name]['m_y'] = T.shape_padaxis(y_current.sum(axis=0), axis=0) / norm  # (1,O) mean output for batch
            outputs[name]['m_x'] = T.dot(x.T, mrk_y) / norm  # (D,O) mean input for batch

            # The mean of the current batch
            outputs[name]['yty'] = T.shape_padaxis(T.sum(y_current ** 2., axis=0), axis=0) / norm  # (1,O)
            outputs[name]['xty'] = T.dot(x.T, y_current) / norm  # D,O

        return dict_to_list(outputs)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_maxru(length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')

    time_updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    time_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                       b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                     W_cell=lasagne.init.GlorotUniform())

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.GlorotUniform())

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_taru = MAXRULayer(layer_input, num_units, max_length=length,
                            P_time=lasagne.init.GlorotUniform(), nonlinearity=nonlinearities.tanh,
                            resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                            time_updategate=time_updategate, time_update=time_update,
                            only_return_final=True, name='MAXRU', p=0.)

    # W = layer_taru.W_hid_to_hidden_update.sum()
    # U = layer_taru.W_in_to_hidden_update.sum()
    # b = layer_taru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_taru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, input_var, target_var, batch_size, length, position, binominal)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_lstm(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    ingate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                  W_cell=lasagne.init.Uniform(range=0.1))

    outgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                   W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_lstm = LSTMLayer(layer_input, num_units, ingate=ingate, forgetgate=forgetgate, cell=cell, outgate=outgate,
                           peepholes=False, nonlinearity=nonlinearities.tanh, only_return_final=True, name='LSTM')

    # W = layer_lstm.W_hid_to_cell.sum()
    # U = layer_lstm.W_in_to_cell.sum()
    # b = layer_lstm.b_cell.sum()

    layer_output = DenseLayer(layer_lstm, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_lstm, input_var, target_var, batch_size, length, position, binominal)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_gru(use_embedd, length, num_units, position, binominal, reset_input):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(batch_size, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_gru = GRULayer_ANA(layer_input, num_units, resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                         reset_input=reset_input, only_return_final=True, name='GRU')

    # W = layer_gru.W_hid_to_hidden_update.sum()
    # U = layer_gru.W_in_to_hidden_update.sum()
    # b = layer_gru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_gru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_gru, input_var, target_var, batch_size, length, position, binominal)
项目:began    作者:davidtellez    | 项目源码 | 文件源码
def dense_layer(input, n_units, name, network_weights, nonlinearity=None, bn=False):

    layer = DenseLayer(input, num_units=n_units, nonlinearity=nonlinearity, name=name,
                       W=get_W(network_weights, name), b=get_b(network_weights, name))
    if bn:
        layer = batch_norm(layer)
    return layer
项目:Deopen    作者:kimmo1019    | 项目源码 | 文件源码
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer16, num_units=256)
    network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
    return network


#random search to initialize the weights
项目:Deopen    作者:kimmo1019    | 项目源码 | 文件源码
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    #layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer15, num_units=256)
    network = DenseLayer(layer17, num_units= 1, nonlinearity=None)
    return network


#random search to initialize the weights
项目:EAC-Net    作者:wiibrew    | 项目源码 | 文件源码
def build_tempral_model():
    net={}
    net['input']=InputLayer((None,24,2048))
    net['lstm1']=LSTMLayer(net['input'],256)
    net['fc']=DenseLayer(net['lstm1'],num_units=12,nonlinearity=sigmoid)

    return net
项目:EAC-Net    作者:wiibrew    | 项目源码 | 文件源码
def build_model():
    net = {}
    net['input'] = InputLayer((None, 512*20, 3, 3))

    au_fc_layers=[]
    for i in range(20):
        net['roi_AU_N_'+str(i)]=SliceLayer(net['input'],indices=slice(i*512,(i+1)*512),axis=1)

        #try to adding upsampling here for more conv

        net['Roi_upsample_'+str(i)]=Upscale2DLayer(net['roi_AU_N_'+str(i)],scale_factor=2)

        net['conv_roi_'+str(i)]=ConvLayer(net['Roi_upsample_'+str(i)],512,3)

        net['au_fc_'+str(i)]=DenseLayer(net['conv_roi_'+str(i)],num_units=150)

        au_fc_layers+=[net['au_fc_'+str(i)]]

    #
    net['local_fc']=concat(au_fc_layers)
    net['local_fc2']=DenseLayer(net['local_fc'],num_units=2048)

    net['local_fc_dp']=DropoutLayer(net['local_fc2'],p=0.5)


    # net['fc_comb']=concat([net['au_fc_layer'],net['local_fc_dp']])


    # net['fc_dense']=DenseLayer(net['fc_comb'],num_units=1024)

    # net['fc_dense_dp']=DropoutLayer(net['fc_dense'],p=0.3)

    net['real_out']=DenseLayer(net['local_fc_dp'],num_units=12,nonlinearity=sigmoid)


    # net['final']=concat([net['pred_pos_layer'],net['output_layer']])

    return net
项目:KGP-ASR    作者:KGPML    | 项目源码 | 文件源码
def getTrainedRNN():
    ''' Read from file and set the params (To Do: Refactor 
        so as to do this only once) '''
    input_size = 39
    hidden_size = 50
    num_output_classes = 29
    learning_rate = 0.001
    output_size = num_output_classes+1
    batch_size = None
    input_seq_length = None
    gradient_clipping = 5

    l_in = InputLayer(shape=(batch_size, input_seq_length, input_size))
    n_batch, n_time_steps, n_features = l_in.input_var.shape #Unnecessary in this version. Just collecting the info so that we can reshape the output back to the original shape
    # h_1 = DenseLayer(l_in, num_units=hidden_size, nonlinearity=clipped_relu)
    l_rec_forward = RecurrentLayer(l_in, num_units=hidden_size, grad_clipping=gradient_clipping, nonlinearity=clipped_relu)
    l_rec_backward = RecurrentLayer(l_in, num_units=hidden_size, grad_clipping=gradient_clipping, nonlinearity=clipped_relu, backwards=True)
    l_rec_accumulation = ElemwiseSumLayer([l_rec_forward,l_rec_backward])
    l_rec_reshaped = ReshapeLayer(l_rec_accumulation, (-1,hidden_size))
    l_h2 = DenseLayer(l_rec_reshaped, num_units=hidden_size, nonlinearity=clipped_relu)
    l_out = DenseLayer(l_h2, num_units=output_size, nonlinearity=lasagne.nonlinearities.linear)
    l_out_reshaped = ReshapeLayer(l_out, (n_batch, n_time_steps, output_size))#Reshaping back
    l_out_softmax = NonlinearityLayer(l_out, nonlinearity=lasagne.nonlinearities.softmax)
    l_out_softmax_reshaped = ReshapeLayer(l_out_softmax, (n_batch, n_time_steps, output_size))


    with np.load('CTC_model.npz') as f:
        param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(l_out_softmax_reshaped, param_values, trainable = True)
    output = lasagne.layers.get_output( l_out_softmax_reshaped )
    return l_in, output
项目:KGP-ASR    作者:KGPML    | 项目源码 | 文件源码
def getTrainedCLM():
    ''' Read CLM from file '''
    #Some parameters for the CLM
    INPUT_SIZE = 29

    #Hidden layer hyper-parameters
    N_HIDDEN = 100
    HIDDEN_NONLINEARITY = 'rectify'

    #Gradient clipping
    GRAD_CLIP = 100
    l_in = lasagne.layers.InputLayer(shape = (None, None, INPUT_SIZE)) #One-hot represenntation of character indices
    l_mask = lasagne.layers.InputLayer(shape = (None, None))

    l_recurrent = lasagne.layers.RecurrentLayer(incoming = l_in, num_units=N_HIDDEN, mask_input = l_mask, learn_init=True, grad_clipping=GRAD_CLIP)
    Recurrent_output=lasagne.layers.get_output(l_recurrent)

    n_batch, n_time_steps, n_features = l_in.input_var.shape

    l_reshape = lasagne.layers.ReshapeLayer(l_recurrent, (-1, N_HIDDEN))
    Reshape_output = lasagne.layers.get_output(l_reshape)

    l_h1 = lasagne.layers.DenseLayer(l_reshape, num_units=N_HIDDEN)
    l_h2 = lasagne.layers.DenseLayer(l_h1, num_units=N_HIDDEN)
    l_dense = lasagne.layers.DenseLayer(l_h2, num_units=INPUT_SIZE, nonlinearity = lasagne.nonlinearities.softmax)
    with np.load('CLM_model.npz') as f:
        param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(l_dense, param_values,trainable = True)
    output = lasagne.layers.get_output( l_dense )
    return l_in,l_mask,output


#def getCLMOneHot( sequence ):