Python lasagne.layers 模块,MergeLayer() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用lasagne.layers.MergeLayer()

项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, incoming, num_labels, mask_input=None, W=init.GlorotUniform(), b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.

        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(ChainCRFLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels + 1
        self.pad_label_index = num_labels

        num_inputs = self.input_shape[2]
        self.W = self.add_param(W, (num_inputs, self.num_labels, self.num_labels), name="W")

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels, self.num_labels), name="b", regularizable=False)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, incoming, num_labels, mask_input=None, W_h=init.GlorotUniform(), W_c=init.GlorotUniform(),
                 b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.
        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(TreeAffineCRFLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels
        dim_inputs = self.input_shape[2]

        # add parameters
        self.W_h = self.add_param(W_h, (dim_inputs, self.num_labels), name='W_h')

        self.W_c = self.add_param(W_c, (dim_inputs, self.num_labels), name='W_c')

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels,), name='b', regularizable=False)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, incoming, num_labels, mask_input=None, U=init.GlorotUniform(), W_h=init.GlorotUniform(),
                 W_c=init.GlorotUniform(), b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.
        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(TreeBiAffineCRFLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels
        dim_inputs = self.input_shape[2]

        # add parameters
        self.U = self.add_param(U, (dim_inputs, dim_inputs, self.num_labels), name='U')
        self.W_h = None if W_h is None else self.add_param(W_h, (dim_inputs, self.num_labels), name='W_h')
        self.W_c = None if W_c is None else self.add_param(W_c, (dim_inputs, self.num_labels), name='W_c')

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels,), name='b', regularizable=False)
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, incoming, num_labels, mask_input=None, W_h=init.GlorotUniform(), W_c=init.GlorotUniform(),
                 b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.
        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(DepParserLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels
        num_inputs = self.input_shape[2]

        # add parameters
        self.W_h = self.add_param(W_h, (num_inputs, self.num_labels), name='W_h')

        self.W_c = self.add_param(W_c, (num_inputs, self.num_labels), name='W_c')

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels,), name='b', regularizable=False)
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def __init__(self, incoming, num_labels, mask_input=None, W=init.GlorotUniform(), b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.

        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(CRFLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels + 1
        self.pad_label_index = num_labels

        num_inputs = self.input_shape[2]
        self.W = self.add_param(W, (num_inputs, self.num_labels, self.num_labels), name="W")

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels, self.num_labels), name="b", regularizable=False)
项目:nn-patterns    作者:pikinder    | 项目源码 | 文件源码
def _construct_layer_maps(self):
        layers = L.get_all_layers(self.output_layer)
        # Store inverse layers to enable merging.
        self.inverse_map = {l: None for l in layers}
        # Store the layers a specific layer feeds.
        self.output_map = {l: [] for l in layers}

        for layer in  layers:
            if type(layer) is not L.InputLayer:
                if isinstance(layer, L.MergeLayer):
                    for feeder in layer.input_layers:
                        self.output_map[feeder].append(layer)
                else:
                    self.output_map[layer.input_layer].append(layer)
项目:dqn_vizdoom_theano    作者:mihahauke    | 项目源码 | 文件源码
def __init__(self, incomings, **kwargs):
        ls.MergeLayer.__init__(self, incomings, **kwargs)