Python lasagne.layers 模块,set_all_param_values() 实例源码

我们从Python开源项目中,提取了以下15个代码示例,用于说明如何使用lasagne.layers.set_all_param_values()

项目:MIX-plus-GAN    作者:yz-ignescent    | 项目源码 | 文件源码
def load_model(self, epoch):
        weights_toload = np.load(self.args.out_dir + '/Dweights_params_epoch{}.npz'.format(epoch))
        weights_list_toload = [weights_toload['arr_{}'.format(k)] for k in range(len(weights_toload.files))]
        LL.set_all_param_values(self.D_weights_layer, weights_list_toload)

        weights_toload = np.load(self.args.out_dir + '/Gweights_params_epoch{}.npz'.format(epoch))
        weights_list_toload = [weights_toload['arr_{}'.format(k)] for k in range(len(weights_toload.files))]
        LL.set_all_param_values(self.G_weights_layer, weights_list_toload)

        for i in range(self.args.ng):
            weights_toload = np.load(self.args.out_dir + '/disc%d_params_epoch%d.npz' % (i,epoch))
            weights_list_toload = [weights_toload['arr_{}'.format(k)] for k in range(len(weights_toload.files))]
            LL.set_all_param_values(self.D_layers[i], weights_list_toload)
            weights_toload = np.load(self.args.out_dir + '/gen%d_params_epoch%d.npz' % (i,epoch))
            weights_list_toload = [weights_toload['arr_{}'.format(k)] for k in range(len(weights_toload.files))]
            LL.set_all_param_values(self.G_layers[i], weights_list_toload)
项目:AcousticEventDetection    作者:kahst    | 项目源码 | 文件源码
def loadModel(filename):
    print "IMPORTING MODEL PARAMS...",
    net_filename = MODEL_PATH + filename

    with open(net_filename, 'rb') as f:
        data = pickle.load(f)

    #for training, we only want to load the model params
    net = data['net']
    params = l.get_all_param_values(net)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])    

    print "DONE!"
项目:ga-reader    作者:bdhingra    | 项目源码 | 文件源码
def load_model(self, load_path):
        with open(load_path, 'r') as f:
            data = pickle.load(f)
        L.set_all_param_values(self.network, data)
项目:BirdCLEF2017    作者:kahst    | 项目源码 | 文件源码
def loadParams(epoch, filename=None):
    print "IMPORTING MODEL PARAMS...",
    if filename == None:
        net_filename = MODEL_PATH + "birdCLEF_" + RUN_NAME + "_model_params_epoch_" + str(epoch) + ".pkl"
    else:
        net_filename = MODEL_PATH + filename
    with open(net_filename, 'rb') as f:
        params = pickle.load(f)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])
    print "DONE!"
项目:BirdCLEF2017    作者:kahst    | 项目源码 | 文件源码
def loadParams(epoch, filename=None):
    print "IMPORTING MODEL PARAMS...",
    net_filename = MODEL_PATH + filename
    with open(net_filename, 'rb') as f:
        params = pickle.load(f)
    l.set_all_param_values(NET, params)
    print "DONE!"

#load params of trained model
项目:BirdCLEF2017    作者:kahst    | 项目源码 | 文件源码
def loadParams(epoch, filename=None):
    print "IMPORTING MODEL PARAMS...",
    net_filename = MODEL_PATH + filename
    with open(net_filename, 'rb') as f:
        params = pickle.load(f)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])
    print "DONE!"

################  PREDICTION SAVE/LOAD  ##################
项目:fg-gating    作者:kimiyoung    | 项目源码 | 文件源码
def load_model(self, load_path):
        with open(load_path, 'r') as f:
            data = pickle.load(f)
        L.set_all_param_values(self.network, data)
项目:Cascade-CNN-Face-Detection    作者:gogolgrind    | 项目源码 | 文件源码
def load_model(self,model_name = nn_name+'.npz'):
        print(model_name,'is loaded')
        with sp.load(model_name) as f:
            param_values = [f['arr_%d' % i] for i in range(len(f.files))]
            layers.set_all_param_values(self.net, param_values)
        return self
项目:dqn_vizdoom_theano    作者:mihahauke    | 项目源码 | 文件源码
def melt(self):
        ls.set_all_param_values(self.frozen_network, ls.get_all_param_values(self.network))
项目:KB-InfoBot    作者:MiuLab    | 项目源码 | 文件源码
def load_model(self, load_path):
        with open(load_path, 'r') as f:
            data = pkl.load(f)
            L.set_all_param_values(self.network, data)
            for item in self.trackers:
                data = pkl.load(f)
                L.set_all_param_values(item, data)
项目:KB-InfoBot    作者:MiuLab    | 项目源码 | 文件源码
def load_model(self, load_path):
        with open(load_path, 'r') as f:
            data = pkl.load(f)
        L.set_all_param_values(self.network, data)
项目:deep-iv    作者:allentran    | 项目源码 | 文件源码
def reset_params(self):

        layers.set_all_param_values(self.treatment_output, self.init_treatment_params)
        layers.set_all_param_values(self.instrument_output, self.init_instrument_params)
项目:crayimage    作者:yandexdataschool    | 项目源码 | 文件源码
def weights(self, weights):
    layers.set_all_param_values(self.outputs, weights)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def _sample_trained_minibatch_gan(params_file, n, batch_size, rs):
    import lasagne
    from lasagne.init import Normal
    import lasagne.layers as ll
    import theano as th
    from theano.sandbox.rng_mrg import MRG_RandomStreams
    import theano.tensor as T

    import nn

    theano_rng = MRG_RandomStreams(rs.randint(2 ** 15))
    lasagne.random.set_rng(np.random.RandomState(rs.randint(2 ** 15)))

    noise_dim = (batch_size, 100)
    noise = theano_rng.uniform(size=noise_dim)
    ls = [ll.InputLayer(shape=noise_dim, input_var=noise)]
    ls.append(nn.batch_norm(
        ll.DenseLayer(ls[-1], num_units=4*4*512, W=Normal(0.05),
                      nonlinearity=nn.relu),
        g=None))
    ls.append(ll.ReshapeLayer(ls[-1], (batch_size,512,4,4)))
    ls.append(nn.batch_norm(
        nn.Deconv2DLayer(ls[-1], (batch_size,256,8,8), (5,5), W=Normal(0.05),
                         nonlinearity=nn.relu),
        g=None)) # 4 -> 8
    ls.append(nn.batch_norm(
        nn.Deconv2DLayer(ls[-1], (batch_size,128,16,16), (5,5), W=Normal(0.05),
                         nonlinearity=nn.relu),
        g=None)) # 8 -> 16
    ls.append(nn.weight_norm(
        nn.Deconv2DLayer(ls[-1], (batch_size,3,32,32), (5,5), W=Normal(0.05),
                         nonlinearity=T.tanh),
        train_g=True, init_stdv=0.1)) # 16 -> 32
    gen_dat = ll.get_output(ls[-1])

    with np.load(params_file) as d:
        params = [d['arr_{}'.format(i)] for i in range(9)]
    ll.set_all_param_values(ls[-1], params, trainable=True)

    sample_batch = th.function(inputs=[], outputs=gen_dat)
    samps = []
    while len(samps) < n:
        samps.extend(sample_batch())
    samps = np.array(samps[:n])
    return samps
项目:MIX-plus-GAN    作者:yz-ignescent    | 项目源码 | 文件源码
def __init__(self, args):

        self.args = args

        rng = np.random.RandomState(self.args.seed) # fixed random seeds
        theano_rng = MRG_RandomStreams(rng.randint(2 ** 15))
        lasagne.random.set_rng(np.random.RandomState(rng.randint(2 ** 15)))
        data_rng = np.random.RandomState(self.args.seed_data)

        ''' specify pre-trained generator E '''
        self.enc_layers = [LL.InputLayer(shape=(None, 3, 32, 32), input_var=None)]
        enc_layer_conv1 = dnn.Conv2DDNNLayer(self.enc_layers[-1], 64, (5,5), pad=0, stride=1, W=Normal(0.01), nonlinearity=nn.relu)
        self.enc_layers.append(enc_layer_conv1)
        enc_layer_pool1 = LL.MaxPool2DLayer(self.enc_layers[-1], pool_size=(2, 2))
        self.enc_layers.append(enc_layer_pool1)
        enc_layer_conv2 = dnn.Conv2DDNNLayer(self.enc_layers[-1], 128, (5,5), pad=0, stride=1, W=Normal(0.01), nonlinearity=nn.relu)
        self.enc_layers.append(enc_layer_conv2)
        enc_layer_pool2 = LL.MaxPool2DLayer(self.enc_layers[-1], pool_size=(2, 2))
        self.enc_layers.append(enc_layer_pool2)
        self.enc_layer_fc3 = LL.DenseLayer(self.enc_layers[-1], num_units=256, nonlinearity=T.nnet.relu)
        self.enc_layers.append(self.enc_layer_fc3)
        self.enc_layer_fc4 = LL.DenseLayer(self.enc_layers[-1], num_units=10, nonlinearity=T.nnet.softmax)
        self.enc_layers.append(self.enc_layer_fc4)


        ''' load pretrained weights for encoder '''
        weights_toload = np.load('pretrained/encoder.npz')
        weights_list_toload = [weights_toload['arr_{}'.format(k)] for k in range(len(weights_toload.files))]
        LL.set_all_param_values(self.enc_layers[-1], weights_list_toload)


        ''' input tensor variables '''
        #self.G_weights
        #self.D_weights
        self.dummy_input = T.scalar()
        self.G_layers = []
        self.z = theano_rng.uniform(size=(self.args.batch_size, self.args.z0dim))
        self.x = T.tensor4()
        self.meanx = T.tensor3()
        self.Gen_x = T.tensor4() 
        self.D_layers = []
        self.D_layer_adv = [] 
        self.D_layer_z_recon = []
        self.gen_lr = T.scalar() # learning rate
        self.disc_lr = T.scalar() # learning rate
        self.y = T.ivector()
        self.y_1hot = T.matrix()
        self.Gen_x_list = []
        self.y_recon_list = []
        self.mincost = T.scalar()
        #self.enc_layer_fc3 = self.get_enc_layer_fc3()

        self.real_fc3 = LL.get_output(self.enc_layer_fc3, self.x, deterministic=True)