我们从Python开源项目中,提取了以下2个代码示例,用于说明如何使用lasagne.layers.NINLayer()。
def get_discriminator(self): ''' specify discriminator D0 ''' """ disc0_layers = [LL.InputLayer(shape=(self.args.batch_size, 3, 32, 32))] disc0_layers.append(LL.GaussianNoiseLayer(disc0_layers[-1], sigma=0.05)) disc0_layers.append(dnn.Conv2DDNNLayer(disc0_layers[-1], 96, (3,3), pad=1, W=Normal(0.02), nonlinearity=nn.lrelu)) disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 96, (3,3), pad=1, stride=2, W=Normal(0.02), nonlinearity=nn.lrelu))) # 16x16 disc0_layers.append(LL.DropoutLayer(disc0_layers[-1], p=0.1)) disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 192, (3,3), pad=1, W=Normal(0.02), nonlinearity=nn.lrelu))) disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 192, (3,3), pad=1, stride=2, W=Normal(0.02), nonlinearity=nn.lrelu))) # 8x8 disc0_layers.append(LL.DropoutLayer(disc0_layers[-1], p=0.1)) disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 192, (3,3), pad=0, W=Normal(0.02), nonlinearity=nn.lrelu))) # 6x6 disc0_layer_shared = LL.NINLayer(disc0_layers[-1], num_units=192, W=Normal(0.02), nonlinearity=nn.lrelu) # 6x6 disc0_layers.append(disc0_layer_shared) disc0_layer_z_recon = LL.DenseLayer(disc0_layer_shared, num_units=50, W=Normal(0.02), nonlinearity=None) disc0_layers.append(disc0_layer_z_recon) # also need to recover z from x disc0_layers.append(LL.GlobalPoolLayer(disc0_layer_shared)) disc0_layer_adv = LL.DenseLayer(disc0_layers[-1], num_units=10, W=Normal(0.02), nonlinearity=None) disc0_layers.append(disc0_layer_adv) return disc0_layers, disc0_layer_adv, disc0_layer_z_recon """ disc_x_layers = [LL.InputLayer(shape=(None, 3, 32, 32))] disc_x_layers.append(LL.GaussianNoiseLayer(disc_x_layers[-1], sigma=0.2)) disc_x_layers.append(dnn.Conv2DDNNLayer(disc_x_layers[-1], 96, (3,3), pad=1, W=Normal(0.01), nonlinearity=nn.lrelu)) disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 96, (3,3), pad=1, stride=2, W=Normal(0.01), nonlinearity=nn.lrelu))) disc_x_layers.append(LL.DropoutLayer(disc_x_layers[-1], p=0.5)) disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 192, (3,3), pad=1, W=Normal(0.01), nonlinearity=nn.lrelu))) disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 192, (3,3), pad=1, stride=2, W=Normal(0.01), nonlinearity=nn.lrelu))) disc_x_layers.append(LL.DropoutLayer(disc_x_layers[-1], p=0.5)) disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 192, (3,3), pad=0, W=Normal(0.01), nonlinearity=nn.lrelu))) disc_x_layers_shared = LL.NINLayer(disc_x_layers[-1], num_units=192, W=Normal(0.01), nonlinearity=nn.lrelu) disc_x_layers.append(disc_x_layers_shared) disc_x_layer_z_recon = LL.DenseLayer(disc_x_layers_shared, num_units=self.args.z0dim, nonlinearity=None) disc_x_layers.append(disc_x_layer_z_recon) # also need to recover z from x # disc_x_layers.append(nn.MinibatchLayer(disc_x_layers_shared, num_kernels=100)) disc_x_layers.append(LL.GlobalPoolLayer(disc_x_layers_shared)) disc_x_layer_adv = LL.DenseLayer(disc_x_layers[-1], num_units=10, W=Normal(0.01), nonlinearity=None) disc_x_layers.append(disc_x_layer_adv) #output_before_softmax_x = LL.get_output(disc_x_layer_adv, x, deterministic=False) #output_before_softmax_gen = LL.get_output(disc_x_layer_adv, gen_x, deterministic=False) # temp = LL.get_output(gen_x_layers[-1], deterministic=False, init=True) # temp = LL.get_output(disc_x_layers[-1], x, deterministic=False, init=True) # init_updates = [u for l in LL.get_all_layers(gen_x_layers)+LL.get_all_layers(disc_x_layers) for u in getattr(l,'init_updates',[])] return disc_x_layers, disc_x_layer_adv, disc_x_layer_z_recon
def build_network(): conv_defs = { 'W': lasagne.init.HeNormal('relu'), 'b': lasagne.init.Constant(0.0), 'filter_size': (3, 3), 'stride': (1, 1), 'nonlinearity': lasagne.nonlinearities.LeakyRectify(0.1) } nin_defs = { 'W': lasagne.init.HeNormal('relu'), 'b': lasagne.init.Constant(0.0), 'nonlinearity': lasagne.nonlinearities.LeakyRectify(0.1) } dense_defs = { 'W': lasagne.init.HeNormal(1.0), 'b': lasagne.init.Constant(0.0), 'nonlinearity': lasagne.nonlinearities.softmax } wn_defs = { 'momentum': .999 } net = InputLayer ( name='input', shape=(None, 3, 32, 32)) net = GaussianNoiseLayer(net, name='noise', sigma=.15) net = WN(Conv2DLayer (net, name='conv1a', num_filters=128, pad='same', **conv_defs), **wn_defs) net = WN(Conv2DLayer (net, name='conv1b', num_filters=128, pad='same', **conv_defs), **wn_defs) net = WN(Conv2DLayer (net, name='conv1c', num_filters=128, pad='same', **conv_defs), **wn_defs) net = MaxPool2DLayer (net, name='pool1', pool_size=(2, 2)) net = DropoutLayer (net, name='drop1', p=.5) net = WN(Conv2DLayer (net, name='conv2a', num_filters=256, pad='same', **conv_defs), **wn_defs) net = WN(Conv2DLayer (net, name='conv2b', num_filters=256, pad='same', **conv_defs), **wn_defs) net = WN(Conv2DLayer (net, name='conv2c', num_filters=256, pad='same', **conv_defs), **wn_defs) net = MaxPool2DLayer (net, name='pool2', pool_size=(2, 2)) net = DropoutLayer (net, name='drop2', p=.5) net = WN(Conv2DLayer (net, name='conv3a', num_filters=512, pad=0, **conv_defs), **wn_defs) net = WN(NINLayer (net, name='conv3b', num_units=256, **nin_defs), **wn_defs) net = WN(NINLayer (net, name='conv3c', num_units=128, **nin_defs), **wn_defs) net = GlobalPoolLayer (net, name='pool3') net = WN(DenseLayer (net, name='dense', num_units=10, **dense_defs), **wn_defs) return net