Python lasagne 模块,nonlinearities() 实例源码

我们从Python开源项目中,提取了以下35个代码示例,用于说明如何使用lasagne.nonlinearities()

项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_rnn(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    layer_rnn = RecurrentLayer(layer_input, num_units, nonlinearity=nonlinearities.tanh, only_return_final=True,
                               W_in_to_hid=lasagne.init.GlorotUniform(), W_hid_to_hid=lasagne.init.GlorotUniform(),
                               b=lasagne.init.Constant(0.), name='RNN')
    # W = layer_rnn.W_hid_to_hid.sum()
    # U = layer_rnn.W_in_to_hid.sum()
    # b = layer_rnn.b.sum()

    layer_output = DenseLayer(layer_rnn, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_rnn, input_var, target_var, batch_size, length, position, binominal)
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    print ("critic output:", layer.output_shape)
    return layer
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_critic(input_var=None, verbose=False):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify, sigmoid
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 3, 32, 32), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 256, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 512, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # # fully-connected layer
    # layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    if verbose: print ("critic output:", layer.output_shape)
    return layer
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def build_BiRNN_CNN(incoming1, incoming2, num_units, mask=None, grad_clipping=0, nonlinearity=nonlinearities.tanh,
                    precompute_input=True, num_filters=20, dropout=True, in_to_out=False):
    # first get some necessary dimensions or parameters
    conv_window = 3
    _, sent_length, _ = incoming2.output_shape

    # dropout before cnn?
    if dropout:
        incoming1 = lasagne.layers.DropoutLayer(incoming1, p=0.5)

    # construct convolution layer
    cnn_layer = lasagne.layers.Conv1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                           nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    pool_layer = lasagne.layers.MaxPool1DLayer(cnn_layer, pool_size=pool_size)
    # reshape the layer to match rnn incoming layer [batch * sent_length, num_filters, 1] --> [batch, sent_length, num_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, (-1, sent_length, [1]))

    # finally, concatenate the two incoming layers together.
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    return build_BiRNN(incoming, num_units, mask=mask, grad_clipping=grad_clipping, nonlinearity=nonlinearity,
                       precompute_input=precompute_input, dropout=dropout, in_to_out=in_to_out)
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def build_BiLSTM_CNN(incoming1, incoming2, num_units, mask=None, grad_clipping=0, precompute_input=True,
                     peepholes=False, num_filters=20, dropout=True, in_to_out=False):
    # first get some necessary dimensions or parameters
    conv_window = 3
    _, sent_length, _ = incoming2.output_shape

    # dropout before cnn?
    if dropout:
        incoming1 = lasagne.layers.DropoutLayer(incoming1, p=0.5)

    # construct convolution layer
    cnn_layer = lasagne.layers.Conv1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                           nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    pool_layer = lasagne.layers.MaxPool1DLayer(cnn_layer, pool_size=pool_size)
    # reshape the layer to match lstm incoming layer [batch * sent_length, num_filters, 1] --> [batch, sent_length, num_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, (-1, sent_length, [1]))

    # finally, concatenate the two incoming layers together.
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    return build_BiLSTM(incoming, num_units, mask=mask, grad_clipping=grad_clipping, peepholes=peepholes,
                        precompute_input=precompute_input, dropout=dropout, in_to_out=in_to_out)
项目:chordrec    作者:fdlm    | 项目源码 | 文件源码
def conv(network, batch_norm, num_layers, num_filters, filter_size, pad,
         pool_size, dropout):
    for k in range(num_layers):
        network = lnn.layers.Conv2DLayer(
            network, num_filters=num_filters,
            filter_size=filter_size,
            W=lnn.init.Orthogonal(gain=np.sqrt(2 / (1 + .1 ** 2))),
            pad=pad,
            nonlinearity=lnn.nonlinearities.rectify,
            name='Conv_{}'.format(k))
        if batch_norm:
            network = lnn.layers.batch_norm(network)

    if pool_size:
        network = lnn.layers.MaxPool2DLayer(network, pool_size=pool_size,
                                            name='Pool')
    if dropout > 0.0:
        network = lnn.layers.DropoutLayer(network, p=dropout)

    return network
项目:chordrec    作者:fdlm    | 项目源码 | 文件源码
def gap(network, out_size, batch_norm,
        gap_nonlinearity, out_nonlinearity):

    gap_nonlinearity = getattr(lnn.nonlinearities, gap_nonlinearity)
    out_nonlinearity = getattr(lnn.nonlinearities, out_nonlinearity)

    # output classification layer
    network = lnn.layers.Conv2DLayer(
        network, num_filters=out_size, filter_size=1,
        nonlinearity=gap_nonlinearity, name='Output_Conv')
    if batch_norm:
        network = lnn.layers.batch_norm(network)

    network = lnn.layers.Pool2DLayer(
        network, pool_size=network.output_shape[-2:], ignore_border=False,
        mode='average_exc_pad', name='GlobalAveragePool')
    network = lnn.layers.FlattenLayer(network, name='Flatten')

    network = lnn.layers.NonlinearityLayer(
        network, nonlinearity=out_nonlinearity, name='output')

    return network
项目:chordrec    作者:fdlm    | 项目源码 | 文件源码
def dense(network, batch_norm, nonlinearity, num_layers, num_units,
          dropout):

    nl = getattr(lnn.nonlinearities, nonlinearity)

    for i in range(num_layers):
        network = lnn.layers.DenseLayer(
            network, num_units=num_units, nonlinearity=nl,
            name='fc-{}'.format(i)
        )
        if batch_norm:
            network = lnn.layers.batch_norm(network)
        if dropout > 0.0:
            network = lnn.layers.DropoutLayer(network, p=dropout)

    return network
项目:WGAN_mnist    作者:rajeswar18    | 项目源码 | 文件源码
def discriminator(input_var):
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(3, 3),
            nonlinearity=lasagne.nonlinearities.rectify,
            W=lasagne.init.GlorotUniform())

    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(4, 4),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=16, filter_size=(4, 4),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1,nonlinearity=linear)


    return network
项目:WGAN_mnist    作者:rajeswar18    | 项目源码 | 文件源码
def discriminator(input_var):
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(3, 3),
            nonlinearity=lasagne.nonlinearities.rectify,
            W=lasagne.init.GlorotUniform())

    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(4, 4),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=16, filter_size=(4, 4),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1,nonlinearity=sigmoid)


    return network
项目:WGAN_mnist    作者:rajeswar18    | 项目源码 | 文件源码
def discriminator(input_var):
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(3, 3),
            nonlinearity=lasagne.nonlinearities.rectify,
            W=lasagne.init.GlorotUniform())

    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(4, 4),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network = lasagne.layers.Conv2DLayer(
            network, num_filters=16, filter_size=(4, 4),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1,nonlinearity=sigmoid)


    return network
项目:Neural-Photo-Editor    作者:ajbrock    | 项目源码 | 文件源码
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
                 crop=0, untie_biases=False,
                 W=initmethod(), b=lasagne.init.Constant(0.),
                 nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False,
                 **kwargs):
        super(DeconvLayer, self).__init__(
                incoming, num_filters, filter_size, stride, crop, untie_biases,
                W, b, nonlinearity, flip_filters, n=2, **kwargs)
        # rename self.crop to self.pad
        self.crop = self.pad
        del self.pad
项目:Neural-Photo-Editor    作者:ajbrock    | 项目源码 | 文件源码
def __init__(self, incoming, num_units, mask_generator,layerIdx,W=lasagne.init.GlorotUniform(),
                 b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs):
        super(MaskedLayer, self).__init__(incoming, num_units, W,b, nonlinearity,**kwargs)
        self.mask_generator = mask_generator
        num_inputs = int(np.prod(self.input_shape[1:]))
        self.weights_mask = self.add_param(spec = np.ones((num_inputs, num_units),dtype=np.float32),
                                           shape = (num_inputs, num_units),
                                           name='weights_mask',
                                           trainable=False,
                                           regularizable=False)
        self.layerIdx = layerIdx
        self.shuffle_update = [(self.weights_mask, mask_generator.get_mask_layer_UPDATE(self.layerIdx))]
项目:Neural-Photo-Editor    作者:ajbrock    | 项目源码 | 文件源码
def get_output_for(self,input, **kwargs):
        if input.ndim > 2:
            input = input.flatten(2)

        activation = T.dot(input, self.W*self.weights_mask)            

        if self.b is not None:
            activation = activation + self.b.dimshuffle('x', 0)
        return self.nonlinearity(activation)        

# Conditioning Masked Layer 
# Currently not used.       
# class CML(MaskedLayer):

    # def __init__(self, incoming, num_units, mask_generator,use_cond_mask=False,U=lasagne.init.GlorotUniform(),W=lasagne.init.GlorotUniform(),
                 # b=init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs):
        # super(CML, self).__init__(incoming, num_units, mask_generator,W,
                 # b, nonlinearity,**kwargs)

        # self.use_cond_mask=use_cond_mask
        # if use_cond_mask:            
            # self.U = self.add_param(spec = U,
                                    # shape = (num_inputs, num_units),
                                    # name='U',
                                    # trainable=True,
                                    # regularizable=False)theano.shared(value=self.weights_initialization((self.n_in, self.n_out)), name=self.name+'U', borrow=True)
            # self.add_param(self.U,name = 
    # def get_output_for(self,input,**kwargs):
       # lin = self.lin_output = T.dot(input, self.W * self.weights_mask) + self.b  
       # if self.use_cond_mask:
           # lin = lin+T.dot(T.ones_like(input), self.U * self.weights_mask)
       # return lin if self._activation is None else self._activation(lin) 



# Made layer, adopted from M.Germain
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_maxru(length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')

    time_updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    time_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                       b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                     W_cell=lasagne.init.GlorotUniform())

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.GlorotUniform())

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_taru = MAXRULayer(layer_input, num_units, max_length=length,
                            P_time=lasagne.init.GlorotUniform(), nonlinearity=nonlinearities.tanh,
                            resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                            time_updategate=time_updategate, time_update=time_update,
                            only_return_final=True, name='MAXRU', p=0.)

    # W = layer_taru.W_hid_to_hidden_update.sum()
    # U = layer_taru.W_in_to_hidden_update.sum()
    # b = layer_taru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_taru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, input_var, target_var, batch_size, length, position, binominal)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_lstm(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    ingate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                  W_cell=lasagne.init.Uniform(range=0.1))

    outgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                   W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_lstm = LSTMLayer(layer_input, num_units, ingate=ingate, forgetgate=forgetgate, cell=cell, outgate=outgate,
                           peepholes=False, nonlinearity=nonlinearities.tanh, only_return_final=True, name='LSTM')

    # W = layer_lstm.W_hid_to_cell.sum()
    # U = layer_lstm.W_in_to_cell.sum()
    # b = layer_lstm.b_cell.sum()

    layer_output = DenseLayer(layer_lstm, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_lstm, input_var, target_var, batch_size, length, position, binominal)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_gru(use_embedd, length, num_units, position, binominal, reset_input):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(batch_size, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_gru = GRULayer_ANA(layer_input, num_units, resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                         reset_input=reset_input, only_return_final=True, name='GRU')

    # W = layer_gru.W_hid_to_hidden_update.sum()
    # U = layer_gru.W_in_to_hidden_update.sum()
    # b = layer_gru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_gru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_gru, input_var, target_var, batch_size, length, position, binominal)
项目:NeuroNLP    作者:XuezheMax    | 项目源码 | 文件源码
def exe_sgru(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    resetgate_input = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    resetgate_hidden = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_sgru = SGRULayer(layer_input, num_units, resetgate_input=resetgate_input, resetgate_hidden=resetgate_hidden,
                           updategate=updategate, hidden_update=hiden_update, only_return_final=True, name='SGRU')

    # W = layer_gru.W_hid_to_hidden_update.sum()
    # U = layer_gru.W_in_to_hidden_update.sum()
    # b = layer_gru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_sgru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_sgru, input_var, target_var, batch_size, length, position, binominal)
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_generator(input_var=None):
    from lasagne.layers import InputLayer, ReshapeLayer, DenseLayer
    try:
        from lasagne.layers import TransposedConv2DLayer as Deconv2DLayer
    except ImportError:
        raise ImportError("Your Lasagne is too old. Try the bleeding-edge "
                          "version: http://lasagne.readthedocs.io/en/latest/"
                          "user/installation.html#bleeding-edge-version")
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import sigmoid
    # input: 100dim
    layer = InputLayer(shape=(None, 100), input_var=input_var)
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024))
    # project and reshape
    layer = batch_norm(DenseLayer(layer, 128*7*7))
    layer = ReshapeLayer(layer, ([0], 128, 7, 7))
    # two fractional-stride convolutions
    layer = batch_norm(Deconv2DLayer(layer, 64, 5, stride=2, crop='same',
                                     output_size=14))
    layer = Deconv2DLayer(layer, 1, 5, stride=2, crop='same', output_size=28,
                          nonlinearity=sigmoid)
    print ("Generator output:", layer.output_shape)
    return layer
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_generator(input_var=None, verbose=False):
    from lasagne.layers import InputLayer, ReshapeLayer, DenseLayer
    try:
        from lasagne.layers import TransposedConv2DLayer as Deconv2DLayer
    except ImportError:
        raise ImportError("Your Lasagne is too old. Try the bleeding-edge "
                          "version: http://lasagne.readthedocs.io/en/latest/"
                          "user/installation.html#bleeding-edge-version")
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import sigmoid
    # input: 100dim
    layer = InputLayer(shape=(None, 100), input_var=input_var)
    # # fully-connected layer
    # layer = batch_norm(DenseLayer(layer, 1024))
    # project and reshape
    layer = batch_norm(DenseLayer(layer, 1024*4*4))
    layer = ReshapeLayer(layer, ([0], 1024, 4, 4))
    # two fractional-stride convolutions
    layer = batch_norm(Deconv2DLayer(layer, 512, 5, stride=2, crop='same',
                                     output_size=8))
    layer = batch_norm(Deconv2DLayer(layer, 256, 5, stride=2, crop='same',
                                     output_size=16))
    layer = Deconv2DLayer(layer, 3, 5, stride=2, crop='same', output_size=32,
                          nonlinearity=sigmoid)
    if verbose: print ("Generator output:", layer.output_shape)
    return layer
项目:Theano-MPI    作者:uoguelph-mlrg    | 项目源码 | 文件源码
def build_generator(input_var=None):
    from lasagne.layers import InputLayer, ReshapeLayer, DenseLayer
    try:
        from lasagne.layers import TransposedConv2DLayer as Deconv2DLayer
    except ImportError:
        raise ImportError("Your Lasagne is too old. Try the bleeding-edge "
                          "version: http://lasagne.readthedocs.io/en/latest/"
                          "user/installation.html#bleeding-edge-version")
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import sigmoid
    # input: 100dim
    layer = InputLayer(shape=(None, 100), input_var=input_var)
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024))
    # project and reshape
    layer = batch_norm(DenseLayer(layer, 128*7*7))
    layer = ReshapeLayer(layer, ([0], 128, 7, 7))
    # two fractional-stride convolutions
    layer = batch_norm(Deconv2DLayer(layer, 64, 5, stride=2, crop='same',
                                     output_size=14))
    layer = Deconv2DLayer(layer, 1, 5, stride=2, crop='same', output_size=28,
                          nonlinearity=sigmoid)
    print ("Generator output:", layer.output_shape)
    return layer
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def build_BiRNN(incoming, num_units, mask=None, grad_clipping=0, nonlinearity=nonlinearities.tanh,
                precompute_input=True, dropout=True, in_to_out=False):
    # construct the forward and backward rnns. Now, Ws are initialized by He initializer with default arguments.
    # Need to try other initializers for specific tasks.

    # dropout for incoming
    if dropout:
        incoming = lasagne.layers.DropoutLayer(incoming, p=0.5)

    rnn_forward = lasagne.layers.RecurrentLayer(incoming, num_units,
                                                mask_input=mask, grad_clipping=grad_clipping,
                                                nonlinearity=nonlinearity, precompute_input=precompute_input,
                                                W_in_to_hid=lasagne.init.GlorotUniform(),
                                                W_hid_to_hid=lasagne.init.GlorotUniform(), name='forward')
    rnn_backward = lasagne.layers.RecurrentLayer(incoming, num_units,
                                                 mask_input=mask, grad_clipping=grad_clipping,
                                                 nonlinearity=nonlinearity, precompute_input=precompute_input,
                                                 W_in_to_hid=lasagne.init.GlorotUniform(),
                                                 W_hid_to_hid=lasagne.init.GlorotUniform(), backwards=True,
                                                 name='backward')

    # concatenate the outputs of forward and backward RNNs to combine them.
    concat = lasagne.layers.concat([rnn_forward, rnn_backward], axis=2, name="bi-rnn")

    # dropout for output
    if dropout:
        concat = lasagne.layers.DropoutLayer(concat, p=0.5)

    if in_to_out:
        concat = lasagne.layers.concat([concat, incoming], axis=2)

    # the shape of BiRNN output (concat) is (batch_size, input_length, 2 * num_hidden_units)
    return concat
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def build_BiLSTM_HighCNN(incoming1, incoming2, num_units, mask=None, grad_clipping=0, precompute_input=True,
                         peepholes=False, num_filters=20, dropout=True, in_to_out=False):
    # first get some necessary dimensions or parameters
    conv_window = 3
    _, sent_length, _ = incoming2.output_shape

    # dropout before cnn
    if dropout:
        incoming1 = lasagne.layers.DropoutLayer(incoming1, p=0.5)

    # construct convolution layer
    cnn_layer = lasagne.layers.Conv1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                           nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    pool_layer = lasagne.layers.MaxPool1DLayer(cnn_layer, pool_size=pool_size)
    # reshape the layer to match highway incoming layer [batch * sent_length, num_filters, 1] --> [batch * sent_length, num_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], -1))

    # dropout after cnn?
    # if dropout:
    # output_cnn_layer = lasagne.layers.DropoutLayer(output_cnn_layer, p=0.5)

    # construct highway layer
    highway_layer = HighwayDenseLayer(output_cnn_layer, nonlinearity=nonlinearities.rectify)

    # reshape the layer to match lstm incoming layer [batch * sent_length, num_filters] --> [batch, sent_length, number_filters]
    output_highway_layer = lasagne.layers.reshape(highway_layer, (-1, sent_length, [1]))

    # finally, concatenate the two incoming layers together.
    incoming = lasagne.layers.concat([output_highway_layer, incoming2], axis=2)

    return build_BiLSTM(incoming, num_units, mask=mask, grad_clipping=grad_clipping, peepholes=peepholes,
                        precompute_input=precompute_input, dropout=dropout, in_to_out=in_to_out)
项目:chordrec    作者:fdlm    | 项目源码 | 文件源码
def build_net(in_shape, out_size, model):
    # input variables
    input_var = (tt.tensor3('input', dtype='float32')
                 if len(in_shape) > 1 else
                 tt.matrix('input', dtype='float32'))
    target_var = tt.matrix('target_output', dtype='float32')

    # stack more layers
    network = lnn.layers.InputLayer(
        name='input', shape=(None,) + in_shape, input_var=input_var)

    if 'conv' in model and model['conv']:
        # reshape to 1 "color" channel
        network = lnn.layers.reshape(
            network, shape=(-1, 1) + in_shape, name='reshape')

        for c in sorted(model['conv'].keys()):
            network = blocks.conv(network, **model['conv'][c])

    # no more output layer if gap is already there!
    if 'gap' in model and model['gap']:
        network = blocks.gap(network, out_size=out_size,
                             out_nonlinearity=model['out_nonlinearity'],
                             **model['gap'])
    else:
        if 'dense' in model and model['dense']:
            network = blocks.dense(network, **model['dense'])

        # output layer
        out_nl = getattr(lnn.nonlinearities, model['out_nonlinearity'])
        network = lnn.layers.DenseLayer(
            network, name='output', num_units=out_size,
            nonlinearity=out_nl)

    return network, input_var, target_var
项目:chordrec    作者:fdlm    | 项目源码 | 文件源码
def recurrent(network, mask_in, num_rec_units, num_layers, dropout,
              bidirectional, nonlinearity):

    if nonlinearity != 'LSTM':
        nl = getattr(lnn.nonlinearities, nonlinearity)

        def add_layer(prev_layer, **kwargs):
            return lnn.layers.RecurrentLayer(
                prev_layer, num_units=num_rec_units, mask_input=mask_in,
                nonlinearity=nl,
                W_in_to_hid=lnn.init.GlorotUniform(),
                W_hid_to_hid=lnn.init.Orthogonal(gain=np.sqrt(2) / 2),
                **kwargs)

    else:
        def add_layer(prev_layer, **kwargs):
            return lnn.layers.LSTMLayer(
                prev_layer, num_units=num_rec_units, mask_input=mask_in,
                **kwargs
            )

    fwd = network
    for i in range(num_layers):
        fwd = add_layer(fwd, name='rec_fwd_{}'.format(i))
        if dropout > 0.:
            fwd = lnn.layers.DropoutLayer(fwd, p=dropout)

    if not bidirectional:
        return network

    bck = network
    for i in range(num_layers):
        bck = add_layer(bck, name='rec_bck_{}'.format(i), backwards=True)
        if dropout > 0:
            bck = lnn.layers.DropoutLayer(bck, p=dropout)

    # combine the forward and backward recurrent layers...
    network = lnn.layers.ConcatLayer([fwd, bck], name='fwd + bck', axis=-1)
    return network
项目:baal    作者:braingineer    | 项目源码 | 文件源码
def default_Fout(self):
        #return lambda x: theano.tensor.maximum(x, 0.)
        return lasagne.nonlinearities.LeakyRectify(0.1)
        #return getattr(lasagne.nonlinearities, self.default_nonlinearity)
项目:baal    作者:braingineer    | 项目源码 | 文件源码
def nonlinearity(self, type):
        if "out":
            return getattr(lasagne.nonlinearities, self.nonlinearity_out)
        elif "hid":
            return getattr(lasagne.nonlinearities, self.nonlinearity_hid)
项目:baal    作者:braingineer    | 项目源码 | 文件源码
def default_Fout(self):
        #return lambda x: theano.tensor.maximum(x, 0.)
        return lasagne.nonlinearities.LeakyRectify(0.1)
        #return getattr(lasagne.nonlinearities, self.default_nonlinearity)
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def batch_norm(layer, **kwargs):
    """
    Apply batch normalization to an existing layer. This is a convenience
    function modifying an existing layer to include batch normalization: It
    will steal the layer's nonlinearity if there is one (effectively
    introducing the normalization right before the nonlinearity), remove
    the layer's bias if there is one (because it would be redundant), and add
    a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.

    Parameters
    ----------
    layer : A :class:`Layer` instance
        The layer to apply the normalization to; note that it will be
        irreversibly modified as specified above
    **kwargs
        Any additional keyword arguments are passed on to the
        :class:`BatchNormLayer` constructor.

    Returns
    -------
    BatchNormLayer or NonlinearityLayer instance
        A batch normalization layer stacked on the given modified `layer`, or
        a nonlinearity layer stacked on top of both if `layer` was nonlinear.

    Examples
    --------
    Just wrap any layer into a :func:`batch_norm` call on creating it:

    >>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
    >>> from lasagne.nonlinearities import tanh
    >>> l1 = InputLayer((64, 768))
    >>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))

    This introduces batch normalization right before its nonlinearity:

    >>> from lasagne.layers import get_all_layers
    >>> [l.__class__.__name__ for l in get_all_layers(l2)]
    ['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
    """
    nonlinearity = getattr(layer, 'nonlinearity', None)
    if nonlinearity is not None:
        layer.nonlinearity = lasagne.nonlinearities.identity
    if hasattr(layer, 'b') and layer.b is not None:
        del layer.params[layer.b]
        layer.b = None
    layer = BatchNormLayer(layer, **kwargs)
    if nonlinearity is not None:
        layer = L.NonlinearityLayer(layer, nonlinearity)
    return layer
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def batch_norm(layer, **kwargs):
    """
    Apply batch normalization to an existing layer. This is a convenience
    function modifying an existing layer to include batch normalization: It
    will steal the layer's nonlinearity if there is one (effectively
    introducing the normalization right before the nonlinearity), remove
    the layer's bias if there is one (because it would be redundant), and add
    a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.

    Parameters
    ----------
    layer : A :class:`Layer` instance
        The layer to apply the normalization to; note that it will be
        irreversibly modified as specified above
    **kwargs
        Any additional keyword arguments are passed on to the
        :class:`BatchNormLayer` constructor.

    Returns
    -------
    BatchNormLayer or NonlinearityLayer instance
        A batch normalization layer stacked on the given modified `layer`, or
        a nonlinearity layer stacked on top of both if `layer` was nonlinear.

    Examples
    --------
    Just wrap any layer into a :func:`batch_norm` call on creating it:

    >>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
    >>> from lasagne.nonlinearities import tanh
    >>> l1 = InputLayer((64, 768))
    >>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))

    This introduces batch normalization right before its nonlinearity:

    >>> from lasagne.layers import get_all_layers
    >>> [l.__class__.__name__ for l in get_all_layers(l2)]
    ['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
    """
    nonlinearity = getattr(layer, 'nonlinearity', None)
    if nonlinearity is not None:
        layer.nonlinearity = lasagne.nonlinearities.identity
    if hasattr(layer, 'b') and layer.b is not None:
        del layer.params[layer.b]
        layer.b = None
    layer = BatchNormLayer(layer, **kwargs)
    if nonlinearity is not None:
        layer = L.NonlinearityLayer(layer, nonlinearity)
    return layer
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def build_BiLSTM(incoming, num_units, mask=None, grad_clipping=0, precompute_input=True, peepholes=False, dropout=True,
                 in_to_out=False):
    # construct the forward and backward rnns. Now, Ws are initialized by Glorot initializer with default arguments.
    # Need to try other initializers for specific tasks.

    # dropout for incoming
    if dropout:
        incoming = lasagne.layers.DropoutLayer(incoming, p=0.5)

    ingate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.Uniform(range=0.1))
    outgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        nonlinearity=nonlinearities.tanh)
    lstm_forward = lasagne.layers.LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                            nonlinearity=nonlinearities.tanh, peepholes=peepholes,
                                            precompute_input=precompute_input,
                                            ingate=ingate_forward, outgate=outgate_forward,
                                            forgetgate=forgetgate_forward, cell=cell_forward, name='forward')

    ingate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    outgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                            W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                               W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                         nonlinearity=nonlinearities.tanh)
    lstm_backward = lasagne.layers.LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                             nonlinearity=nonlinearities.tanh, peepholes=peepholes,
                                             precompute_input=precompute_input, backwards=True,
                                             ingate=ingate_backward, outgate=outgate_backward,
                                             forgetgate=forgetgate_backward, cell=cell_backward, name='backward')

    # concatenate the outputs of forward and backward RNNs to combine them.
    concat = lasagne.layers.concat([lstm_forward, lstm_backward], axis=2, name="bi-lstm")

    # dropout for output
    if dropout:
        concat = lasagne.layers.DropoutLayer(concat, p=0.5)

    if in_to_out:
        concat = lasagne.layers.concat([concat, incoming], axis=2)

    # the shape of BiRNN output (concat) is (batch_size, input_length, 2 * num_hidden_units)
    return concat
项目:LasagneNLP    作者:XuezheMax    | 项目源码 | 文件源码
def build_BiGRU(incoming, num_units, mask=None, grad_clipping=0, precompute_input=True, dropout=True, in_to_out=False):
    # construct the forward and backward grus. Now, Ws are initialized by Glorot initializer with default arguments.
    # Need to try other initializers for specific tasks.

    # dropout for incoming
    if dropout:
        incoming = lasagne.layers.DropoutLayer(incoming, p=0.5)

    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    resetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                             W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1))
    # now use tanh for nonlinear function of hidden gate
    hidden_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                          nonlinearity=nonlinearities.tanh)
    gru_forward = lasagne.layers.GRULayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                          precompute_input=precompute_input,
                                          resetgate=resetgate_forward, updategate=updategate_forward,
                                          hidden_update=hidden_forward, name='forward')

    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    resetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                               W_cell=lasagne.init.Uniform(range=0.1))
    # now use tanh for nonlinear function of hidden gate
    hidden_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                           nonlinearity=nonlinearities.tanh)
    gru_backward = lasagne.layers.GRULayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                           precompute_input=precompute_input, backwards=True,
                                           resetgate=resetgate_backward, updategate=updategate_backward,
                                           hidden_update=hidden_backward, name='backward')

    # concatenate the outputs of forward and backward GRUs to combine them.
    concat = lasagne.layers.concat([gru_forward, gru_backward], axis=2, name="bi-gru")

    # dropout for output
    if dropout:
        concat = lasagne.layers.DropoutLayer(concat, p=0.5)

    if in_to_out:
        concat = lasagne.layers.concat([concat, incoming], axis=2)

    # the shape of BiRNN output (concat) is (batch_size, input_length, 2 * num_hidden_units)
    return concat
项目:triple-gan    作者:zhenxuan00    | 项目源码 | 文件源码
def build_network():
    conv_defs = {
        'W': lasagne.init.HeNormal('relu'),
        'b': lasagne.init.Constant(0.0),
        'filter_size': (3, 3),
        'stride': (1, 1),
        'nonlinearity': lasagne.nonlinearities.LeakyRectify(0.1)
    }

    nin_defs = {
        'W': lasagne.init.HeNormal('relu'),
        'b': lasagne.init.Constant(0.0),
        'nonlinearity': lasagne.nonlinearities.LeakyRectify(0.1)
    }

    dense_defs = {
        'W': lasagne.init.HeNormal(1.0),
        'b': lasagne.init.Constant(0.0),
        'nonlinearity': lasagne.nonlinearities.softmax
    }

    wn_defs = {
        'momentum': .999
    }

    net = InputLayer        (     name='input',    shape=(None, 3, 32, 32))
    net = GaussianNoiseLayer(net, name='noise',    sigma=.15)
    net = WN(Conv2DLayer    (net, name='conv1a',   num_filters=128, pad='same', **conv_defs), **wn_defs)
    net = WN(Conv2DLayer    (net, name='conv1b',   num_filters=128, pad='same', **conv_defs), **wn_defs)
    net = WN(Conv2DLayer    (net, name='conv1c',   num_filters=128, pad='same', **conv_defs), **wn_defs)
    net = MaxPool2DLayer    (net, name='pool1',    pool_size=(2, 2))
    net = DropoutLayer      (net, name='drop1',    p=.5)
    net = WN(Conv2DLayer    (net, name='conv2a',   num_filters=256, pad='same', **conv_defs), **wn_defs)
    net = WN(Conv2DLayer    (net, name='conv2b',   num_filters=256, pad='same', **conv_defs), **wn_defs)
    net = WN(Conv2DLayer    (net, name='conv2c',   num_filters=256, pad='same', **conv_defs), **wn_defs)
    net = MaxPool2DLayer    (net, name='pool2',    pool_size=(2, 2))
    net = DropoutLayer      (net, name='drop2',    p=.5)
    net = WN(Conv2DLayer    (net, name='conv3a',   num_filters=512, pad=0,      **conv_defs), **wn_defs)
    net = WN(NINLayer       (net, name='conv3b',   num_units=256,               **nin_defs),  **wn_defs)
    net = WN(NINLayer       (net, name='conv3c',   num_units=128,               **nin_defs),  **wn_defs)
    net = GlobalPoolLayer   (net, name='pool3')
    net = WN(DenseLayer     (net, name='dense',    num_units=10,       **dense_defs), **wn_defs)

    return net
项目:rllab    作者:rll    | 项目源码 | 文件源码
def batch_norm(layer, **kwargs):
    """
    Apply batch normalization to an existing layer. This is a convenience
    function modifying an existing layer to include batch normalization: It
    will steal the layer's nonlinearity if there is one (effectively
    introducing the normalization right before the nonlinearity), remove
    the layer's bias if there is one (because it would be redundant), and add
    a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.

    Parameters
    ----------
    layer : A :class:`Layer` instance
        The layer to apply the normalization to; note that it will be
        irreversibly modified as specified above
    **kwargs
        Any additional keyword arguments are passed on to the
        :class:`BatchNormLayer` constructor.

    Returns
    -------
    BatchNormLayer or NonlinearityLayer instance
        A batch normalization layer stacked on the given modified `layer`, or
        a nonlinearity layer stacked on top of both if `layer` was nonlinear.

    Examples
    --------
    Just wrap any layer into a :func:`batch_norm` call on creating it:

    >>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
    >>> from lasagne.nonlinearities import tanh
    >>> l1 = InputLayer((64, 768))
    >>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))

    This introduces batch normalization right before its nonlinearity:

    >>> from lasagne.layers import get_all_layers
    >>> [l.__class__.__name__ for l in get_all_layers(l2)]
    ['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
    """
    nonlinearity = getattr(layer, 'nonlinearity', None)
    if nonlinearity is not None:
        layer.nonlinearity = lasagne.nonlinearities.identity
    if hasattr(layer, 'b') and layer.b is not None:
        del layer.params[layer.b]
        layer.b = None
    layer = BatchNormLayer(layer, **kwargs)
    if nonlinearity is not None:
        layer = L.NonlinearityLayer(layer, nonlinearity)
    return layer
项目:maml_rl    作者:cbfinn    | 项目源码 | 文件源码
def batch_norm(layer, **kwargs):
    """
    Apply batch normalization to an existing layer. This is a convenience
    function modifying an existing layer to include batch normalization: It
    will steal the layer's nonlinearity if there is one (effectively
    introducing the normalization right before the nonlinearity), remove
    the layer's bias if there is one (because it would be redundant), and add
    a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.

    Parameters
    ----------
    layer : A :class:`Layer` instance
        The layer to apply the normalization to; note that it will be
        irreversibly modified as specified above
    **kwargs
        Any additional keyword arguments are passed on to the
        :class:`BatchNormLayer` constructor.

    Returns
    -------
    BatchNormLayer or NonlinearityLayer instance
        A batch normalization layer stacked on the given modified `layer`, or
        a nonlinearity layer stacked on top of both if `layer` was nonlinear.

    Examples
    --------
    Just wrap any layer into a :func:`batch_norm` call on creating it:

    >>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
    >>> from lasagne.nonlinearities import tanh
    >>> l1 = InputLayer((64, 768))
    >>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))

    This introduces batch normalization right before its nonlinearity:

    >>> from lasagne.layers import get_all_layers
    >>> [l.__class__.__name__ for l in get_all_layers(l2)]
    ['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
    """
    nonlinearity = getattr(layer, 'nonlinearity', None)
    if nonlinearity is not None:
        layer.nonlinearity = lasagne.nonlinearities.identity
    if hasattr(layer, 'b') and layer.b is not None:
        del layer.params[layer.b]
        layer.b = None
    layer = BatchNormLayer(layer, **kwargs)
    if nonlinearity is not None:
        layer = L.NonlinearityLayer(layer, nonlinearity)
    return layer