我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用math.isclose()。
def test_perpendicular(p1, p2, p3): assume(p1 != p2) l = Line(p1, p2) foot = l.foot(p3) perp = l.perpendicular(p3) print(foot) print(perp) # Property: foot should be on l. assert line_collinear(p1, p2, foot) # Property: foot should be on perp. assert line_collinear(perp.p1, perp.p2, foot) # Property: perp's angle should be 90 degrees from l's. angle_between = l.angle() - perp.angle() assert math.isclose(angle_between % 180, 90) # Segments
def test_combine_paths(paths): combined = combine_paths(paths) # Property: the points in the combined paths should all have been in the # original paths. assert point_set(paths) >= point_set(combined) # Property: the combined paths should have no duplicate endpoints. the_ends = endpoints(combined) assert len(the_ends) == len(set(the_ends)) # Property: the combined paths should have the same or fewer segments as # the original paths. assert num_segments(paths) >= num_segments(combined) # Property: the combined paths should have the same total length as the # original paths. assert math.isclose(paths_length(paths), paths_length(combined)) # Property: there should be no collinear triples in any path. assert not any(path.any_collinear() for path in combined)
def test_from_regular_center(self): for i in range(3, 13): _poly = polygon2.Polygon2.from_regular(i, 1) foundx0 = False foundy0 = False for p in _poly.points: if math.isclose(p.x, 0, abs_tol=1e-07): foundx0 = True if foundy0: break if math.isclose(p.y, 0, abs_tol=1e-07): foundy0 = True if foundx0: break helpmsg = "\ni={}\nfoundx0={}, foundy0={}, center={}\nrepr={}\n\nstr={}".format(i, foundx0, foundy0, _poly.center, repr(_poly), str(_poly)) self.assertTrue(foundx0, msg=helpmsg) self.assertTrue(foundy0, msg=helpmsg)
def test_contains_point_regressions(self): # the fuzzer actually caught an error. put them in here to ensure they don't # come back. The first issue was math.isclose without abs_tol on values close # to 0 is too strict poly = polygon2.Polygon2([ (2, 3), (3, 5), (5, 4), (3, 2) ]) regression_tests = [ (poly.points, vector2.Vector2(4, 3), True, False, vector2.Vector2(-509.47088031477625, 57.99699262312129)) ] for regression in regression_tests: points = regression[0] point = regression[1] expected_edge = regression[2] expected_contains = regression[3] offset = regression[4] new_points = [] for pt in points: new_points.append(pt - offset) new_poly = polygon2.Polygon2(new_points) edge, cont = polygon2.Polygon2.contains_point(new_poly, offset, point) help_msg = "regression failed.\n\npoints={}, point={}, offset={}, expected_edge={}, expected_contains={}, edge={}, contains={}".format(points, point, offset, expected_edge, expected_contains, edge, cont) self.assertEqual(expected_edge, edge, msg=help_msg) self.assertEqual(expected_contains, cont, msg=help_msg)
def are_parallel(line1, line2): """ Determine if the two lines are parallel. Two lines are parallel if they have the same or opposite slopes. :param line1: the first line :type line1: :class:`pygorithm.geometry.line2.Line2` :param line2: the second line :type line2: :class:`pygorithm.geometry.line2.Line2` :returns: if the lines are parallel :rtype: bool """ if line1.vertical and line2.vertical: return True return math.isclose(line1.slope, line2.slope)
def contains_point(line, point): """ Determine if the line contains the specified point. The point must be defined the same way as min and max. .. tip:: It is not possible for both returned booleans to be `True`. :param line: the line :type line: :class:`pygorithm.geometry.axisall.AxisAlignedLine` :param point: the point :type point: :class:`numbers.Number` :returns: (if the point is an edge of the line, if the point is contained by the line) :rtype: (bool, bool) """ if math.isclose(line.min, point) or math.isclose(line.max, point): return True, False elif point < line.min or point > line.max: return False, False else: return False, True
def get_request_state_from_pond_blocks(request_state, acceptability_threshold, request_blocks): active_blocks = False future_blocks = False now = timezone.now() for block in request_blocks: start_time = dateutil.parser.parse(block['start']).replace(tzinfo=timezone.utc) end_time = dateutil.parser.parse(block['end']).replace(tzinfo=timezone.utc) # mark a block as complete if a % of the total exposures of all its molecules are complete completion_percent = exposure_completion_percentage_from_pond_block(block) if isclose(acceptability_threshold, completion_percent) or completion_percent >= acceptability_threshold: return 'COMPLETED' if (not block['canceled'] and not any(molecule['failed'] for molecule in block['molecules']) and start_time < now < end_time): active_blocks = True if now < start_time: future_blocks = True if not (future_blocks or active_blocks): return 'FAILED' return request_state
def test_sloping_line(): ''' a simple linear function ''' def line(x): return 2 + 3*x # I got 159.99999999999 rather than 160 # hence the need for isclose() assert isclose(trapz(line, 2, 10), 160) m, B = 3, 2 a, b = 0, 5 assert isclose(trapz(line, a, b), 1/2*m*(b**2 - a**2) + B*(b-a)) a, b = 5, 10 assert isclose(trapz(line, a, b), 1/2*m*(b**2 - a**2) + B*(b-a)) a, b = -10, 5 assert isclose(trapz(line, a, b), 1/2*m*(b**2 - a**2) + B*(b-a))
def compare_as_floats(xs, ys, error): def f(x): try: y = float(x) if not math.isfinite(y): log.warning('not an real number found: %f', y) return y except ValueError: return x xs = list(map(f, xs.split())) ys = list(map(f, ys.split())) if len(xs) != len(ys): return False for x, y in zip(xs, ys): if isinstance(x, float) and isinstance(y, float): if not math.isclose(x, y, rel_tol=error, abs_tol=error): return False else: if x != y: return False return True
def getPointsBtwnVertices(v1, v2, dx): """ accepts: v1: the position of one vertex v2: the position of the other vertex dx: stride length returns: points: ordered list of points between v1 and v2 at which to take a photo """ points = [] v1x, v2x = v1[0], v2[0] v1y, v2y = v1[1], v2[1] if np.isclose(v1x, v2x): return getPointsonVerticalLine(v1x, v1y, v2y, dx) if v2x-v1x<0: dx = -dx xPoints = int((v2x - v1x) / dx) dy = (v2y - v1y) / (v2x - v1x) * dx x, y = v1x, v1y for pointNo in range(xPoints): points.append((x, y)) x += dx y += dy return points
def test_sample_images(): variables = ['x', 'nt'] with open('sample_img/tests.csv', 'r') as csvfile: # filename, x, y, w, h testreader = csv.reader(csvfile, delimiter=',') for sample in testreader: image = cv2.imread('sample_img/' + sample[0]) # Rescale if necessary height, width, channels = image.shape x, img, num_targets, target_sep = find_target(image) assert num_targets == int(sample[2]) if num_targets == 0: x = None continue if x != None and sample[1] != None: sample[1] = 2 * float(sample[1]) / width - 1 assert math.isclose(x, sample[1], abs_tol=0.1)
def test_projection(self): x, y = sphere._py_from4326_to3857(p_minsk) assert math.isclose(x, 3068168.9922502628, rel_tol=1e-06) assert math.isclose(y, 7151666.629430503, rel_tol=1e-06) x, y = _sphere._from4326_to3857(p_minsk) assert math.isclose(x, 3068168.9922502628, rel_tol=1e-06) assert math.isclose(y, 7151666.629430503, rel_tol=1e-06) lon, lat = sphere._py_from3857_to4326( sphere._py_from4326_to3857(p_minsk)) assert math.isclose(lon, p_minsk[0], rel_tol=1e-06) assert math.isclose(lat, p_minsk[1], rel_tol=1e-06) lon, lat = _sphere._from3857_to4326( _sphere._from4326_to3857(p_minsk)) assert math.isclose(lon, p_minsk[0], rel_tol=1e-06) assert math.isclose(lat, p_minsk[1], rel_tol=1e-06)
def test_projection(self): assert ( ellipsoid._py_from4326_to3395(p_minsk) == (3068168.9922502623, 7117115.955611216) ) rp_minsk = ellipsoid._py_from3395_to4326( ellipsoid._py_from4326_to3395(p_minsk)) assert math.isclose(rp_minsk[0], p_minsk[0], rel_tol=1e-06) assert math.isclose(rp_minsk[1], p_minsk[1], rel_tol=1e-06) assert ( _ellipsoid._from4326_to3395(p_minsk) == (3068168.9922502623, 7117115.955611216) ) rp_minsk = _ellipsoid._from3395_to4326( _ellipsoid._from4326_to3395(p_minsk)) assert math.isclose(rp_minsk[0], p_minsk[0], rel_tol=1e-06) assert math.isclose(rp_minsk[1], p_minsk[1], rel_tol=1e-06)
def test_large_pop_tree(): ROOT = Population(name='ROOT') AB = Population(name='AB', father=ROOT) A = Population(name='A', father=AB) B = Population(name='B', father=AB) CD = Population(name='CD', father=ROOT) C = Population(name='C', father=CD) D = Population(name='D', father=CD) a = Event(time=0.0, lca_pop=A) b = Event(time=0.0, lca_pop=B) ab = Event(time=0.5, left=a, right=b) c = Event(time=0.0, lca_pop=C) d = Event(time=0.0, lca_pop=D) cd = Event(time=0.6, left=c, right=d) r = Event(time=1.0, left=ab, right=cd) tau_bounds = find_tau_bounds(r) for pop, event in ((A, a), (B, b), (C, c), (D, d), (AB, ab), (CD, cd), (ROOT, r)): assert isclose(tau_bounds[pop], event.time)
def test_multiple_bounders(): AB = Population(name='AB') A = Population(name='A', father=AB) B = Population(name='B', father=AB) a = Event(time=0.0, lca_pop=A) b = Event(time=0.0, lca_pop=B) c = Event(time=0.0, lca_pop=B) d = Event(time=0.0, lca_pop=B) ab = Event(time=0.5, left=a, right=b) abc = Event(time=0.6, left=ab, right=c) abcd = Event(time=0.7, left=abc, right=d) tau_bounds = find_tau_bounds(abcd) assert isclose(tau_bounds[AB], ab.time)
def test_bounder_bounds_multiple_pops(): ABC = Population(name='ABC') AB = Population(name='AB', father=ABC) C = Population(name='C', father=ABC) A = Population(name='A', father=AB) B = Population(name='B', father=AB) AB.left, AB.right = A, B ABC.left, ABC.right = AB, C a = Event(time=0.0, lca_pop=A) c = Event(time=0.0, lca_pop=C) ac = Event(time=0.5, left=a, right=c) tau_bounds = find_tau_bounds(ac) assert isclose(tau_bounds[AB], ac.time) assert isclose(tau_bounds[ABC], ac.time)
def test_shrink_and_sort(frame=None): if not frame: frame = DATA + '/vectors/glove12-840B.h5' vectors = load_any_embeddings(frame) n, k = 10, 20 shrank = shrink_and_sort(vectors, n, k) # Check the size of the frame ok_(shrank.shape == (n, k)) # Check if the frame is l2 normalized lengths = np.sqrt(np.sum(np.power(shrank, 2), axis='columns')) ok_(all(isclose(length, 1.0, rel_tol=1e-04) for length in lengths)) # Check if the index is sorted ok_(shrank.index.is_monotonic_increasing)
def test_point_distance(p1, p2, result): assert math.isclose(Point(*p1).distance(Point(*p2)), result)
def test_line_angle(p1, p2, angle): l = Line(Point(*p1), Point(*p2)) assert math.isclose(l.angle(), angle)
def isclose(a, b): """Are two floats close together, even near zero.""" return math.isclose(a, b, abs_tol=1e-8)
def has_changed(self, to_value=None): if len(self._shift_register) > 1: if to_value is not None: # if we are comparing to a given value (that matches the data class)... if to_value.__class__ != self._data_class: return None if self._data_class == float: # compare with isclose, for floats return math.isclose(self._shift_register[-1], to_value, rel_tol=1.0e-6) and self.has_changed() else: # compare with equality, otherwise return (self._shift_register[-1] == to_value) and self.has_changed() else: # if we are just checking if the latest value changed at all if self._data_class == float: # compare with isclose, for floats return not math.isclose(self._shift_register[-1], self._shift_register[-2]) else: # compare with equality, otherwise return (self._shift_register[-1] != self._shift_register[-2]) else: return False #--- Basic PID controller class #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-
def isclose(a, b, rel_tol=1e-09, abs_tol=0): """ Python 2 implementation of Python 3.5 math.isclose() https://hg.python.org/cpython/file/v3.5.2/Modules/mathmodule.c#l1993 """ # sanity check on the inputs if rel_tol < 0 or abs_tol < 0: raise ValueError("tolerances must be non-negative") # short circuit exact equality -- needed to catch two infinities of # the same sign. And perhaps speeds things up a bit sometimes. if a == b: return True # This catches the case of two infinities of opposite sign, or # one infinity and one finite number. Two infinities of opposite # sign would otherwise have an infinite relative tolerance. # Two infinities of the same sign are caught by the equality check # above. if _isinf(a) or _isinf(b): return False # Cast to float to allow decimal.Decimal arguments if not isinstance(a, float): a = float(a) if not isinstance(b, float): b = float(b) # now do the regular computation # this is essentially the "weak" test from the Boost library diff = _fabs(b - a) result = ((diff <= _fabs(rel_tol * a)) or (diff <= _fabs(rel_tol * b)) or (diff <= abs_tol)) return result
def __eq__(self, other): return math.isclose(self[0], other[0], abs_tol=self.abs_tol) and math.isclose(self[1], other[1], abs_tol=self.abs_tol)
def contains_point(rect, point): """ Determine if the rect contains the point Distinguish between points that are on the edge of the rect and those that are not. .. tip:: This will never return ``True, True`` :param rect: the rect :type rect: :class:`pygorithm.geometry.rect2.Rect2` :param point: the point :type point: :class:`pygorithm.geometry.vector2.Vector2` :returns: point on edge, point inside :rtype: bool, bool """ edge_x = math.isclose(rect.mincorner.x, point.x, abs_tol=1e-07) or math.isclose(rect.mincorner.x + rect.width, point.x, abs_tol=1e-07) edge_y = math.isclose(rect.mincorner.y, point.y, abs_tol=1e-07) or math.isclose(rect.mincorner.y + rect.height, point.y, abs_tol=1e-07) if edge_x and edge_y: return True, False contains = (edge_x or (point.x > rect.mincorner.x and point.x < rect.mincorner.x + rect.width)) and \ (edge_y or (point.y > rect.mincorner.y and point.y < rect.mincorner.y + rect.height)) if not contains: return False, False elif edge_x or edge_y: return True, False else: return False, True
def contains_point(polygon, offset, point): """ Determine if the polygon at offset contains point. Distinguish between points that are on the edge of the polygon and points that are completely contained by the polygon. .. tip:: This can never return True, True This finds the cross product of this point and the two points comprising every line on this polygon. If any are 0, this is an edge. Otherwise, they must all be negative (when traversed clockwise). :param polygon: the polygon :type polygon: :class:`pygorithm.geometry.polygon2.Polygon2` :param offset: the offset of the polygon :type offset: :class:`pygorithm.geometry.vector2.Vector2` or None :param point: the point to check :type point: :class:`pygorithm.geometry.vector2.Vector2` :returns: on edge, contained :rtype: bool, bool """ _previous = polygon.points[0] for i in range(1, len(polygon.points) + 1): curr = polygon.points[i % len(polygon.points)] vec1 = _previous + offset - point vec2 = curr + offset - point cross = vec1.cross(vec2) _previous = curr if math.isclose(cross, 0, abs_tol=1e-07): return True, False if cross > 0: return False, False return False, True
def test_collinear(pt1, pt2, pt3): Ax = pt1[0] Ay = pt1[1] Bx = pt2[0] By = pt2[1] Cx = pt3[0] Cy = pt3[1] return math.isclose(Ax * (By - Cy) + Bx * (Cy - Ay) + Cx * (Ay - By), 0, abs_tol=1e-07)
def normalize(self): """ Returns a new distribution with the probabilities normalized so that their total sums to 1. """ if math.isclose(self.total, 1) or self.total == 0: return self return Distribution(*((v, p/self.total) for v, p in self), force_flatten=self.force_flatten, force_merge=self.force_merge)
def draw(self, cr, pos, text_width): self.strip() width = sum([box.width for box in self.boxes]) # Center lines not equal to text width. if not math.isclose(width, text_width): pos.x -= (text_width - width)/2 for box in self.boxes: # We start drawing from the right edge of the text block, # and move to the left, thus the subtraction instead of # addition below. pos.x -= box.width box.draw(cr, pos)
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): """ Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves. """ if rel_tol < 0.0 or abs_tol < 0.0: raise ValueError('error tolerances must be non-negative') if a == b: # short-circuit exact equality return True if math.isinf(a) or math.isinf(b): # This includes the case of two infinities of opposite sign, or # one infinity and one finite number. Two infinities of opposite sign # would otherwise have an infinite relative tolerance. return False diff = abs(b - a) return (((diff <= abs(rel_tol * b)) and (diff <= abs(rel_tol * a))) or (diff <= abs_tol))
def test_is_close(): ''' just to make sure ''' assert isclose(4.5, 4.5) assert isclose(4.5, 4.499999999999999999) assert not isclose(4.5, 4.6) # of course, not comprehesive! # you need to compute a bunch of evenly spaced numbers from a to b # kind of like range() but for floating point numbers # I did it as a separate function so I could test it
def test_sine(): # a sine curve from zero to pi -- should be 2 # with a hundred points, only correct to about 4 figures assert isclose(trapz(math.sin, 0, math.pi), 2.0, rel_tol=1e-04)
def test_sine2(): # a sine curve from zero to 2pi -- should be 0.0 # need to set an absolute tolerance when comparing to zero assert isclose(trapz(math.sin, 0, 2*math.pi), 0.0, abs_tol=1e-8) # test the quadratic function itself # this is pytest's way to test a bunch of input and output values # it creates a separate test for each case.
def test_quadratic_trapz_args_kwargs(): """ Testing if you can pass a combination of positional and keyword arguments one case: A=2, B=-4, C=3 """ A, B, C = 2, -4, 3 a, b = -2, 2 assert isclose(trapz(quadratic, a, b, A, B, C=C), quad_solution(a, b, A, B, C), rel_tol=1e-3) # not a great tolerance -- maybe should try more samples!
def test_sine_freq_amp(): a = 0 b = 5 omega = 0.5 amp = 10 assert isclose(trapz(sine_freq_amp, a, b, amp=amp, freq=omega), solution_freq_amp(a, b, amp, omega), rel_tol=1e-04)
def trapz(fun, a, b, tol=1e-4, *args, **kwargs): """ Compute the area under the curve defined by y = fun(x), for x between a and b :param fun: the function to evaluate :type fun: a function that takes teh vule to be integrated over as its first argument. Any arguments can be passed in at the end. :param a: the start point for the integration :type a: a numeric value :param b: the end point for the integration :type b: a numeric value :param tol=1e-4: accuracy expected. any other arguments will be passed through to fun. """ # compute the range # loop to try varying step sizes until desired accuracey is achieved prev_s = None n = 2 # start with only two steps while True: # break out when desired accuracy is reached vals = frange(a, b, n) s = sum([fun(x, *args, **kwargs) for x in vals[1:-1]]) s += (fun(a, *args, **kwargs) + fun(b, *args, **kwargs)) / 2 s *= (b-a) / n if prev_s is not None: # check if we're close enough # abs_tol is for comparison to zero if isclose(s, prev_s, rel_tol=tol, abs_tol=tol): return s n *= 2 prev_s = s # this could be a more sophisticated criterion if n >= 2**22: # it's not going to work (about half the precision of a double) raise ValueError("Solution didn't converge")
def equal(a, b): return math.isclose(a, b, abs_tol=0.001)
def __init__(self, *, total, start = None, vesting_dates = DEFAULT_VESTING_DATES, vesting = (0.25, 0.25, 0.25, 0.25)): """Create an equity grant description. TOTAL is the total size, in dollars, of the grant. START is the date on which it starts; if None, the grant clock starts on the company start date. VESTING_DATES is a sequence of (MONTH, DAY) pairs on which equity grants vest --- a grant that vests quarterly will have a four-element VESTING_DATES sequence. VESTING is a sequence of numbers that sum to 1.0. With default vesting dates, each one represents a year over which the grant vests, and the value of the number indicates the portion of the grant that vests in that year. """ self.total = typecheck(total, numbers.Real) self.start = typecheck(start, (date, timedelta, type(None))) self.vesting_dates = typecheck(vesting_dates, seq_of(pair_of(int))) self.vesting = typecheck(vesting, seq_of(numbers.Real)) if not math.isclose(sum(vesting), 1.0, rel_tol=1e-5): raise ValueError("vesting fractions do not sum to 1: %1.5f" % sum(vesting))
def diagonalize_curvature(cls, old_u, old_v, ku, kuv, kv, new_norm): """Given a curvature tensor, diagonalize to find principal directions and curvatures.""" # Rotate old coord system to be normal to new. r_old_u, r_old_v = cls.rotate_coord_sys(old_u, old_v, new_norm) c = 1 s = 0 tt = 0 if not math.isclose(kuv, 0): # Jacobi rotation to diagonalize. h = 0.5 * (kv - ku) / kuv if h < 0: tt = 1 / (h - math.sqrt(1 + h*h)) else: tt = 1 / (h + math.sqrt(1 + h*h)) c = 1 / math.sqrt(1 + tt*tt) s = tt * c # Compute principal curvatures. k1 = ku - tt * kuv k2 = kv + tt * kuv # Compute principal directions. if abs(k1) >= abs(k2): pdir1 = c * r_old_u - s * r_old_v else: k1, k2 = k2, k1 # swap pdir1 = s * r_old_u + c * r_old_v pdir2 = np.cross(new_norm, pdir1) # Return all the things. return pdir1, pdir2, k1, k2
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): "Return true if numbers a and b are close to each other." return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) # ______________________________________________________________________________ # Misc Functions # TODO: Use functools.lru_cache memoization decorator
def get_document_dimensions(tree, max_area=(11.0, 8.5)): """ Return the dimensions of this document in inches as to be plotted. If the document specifies physical units, they will be converted to inches, and asserted to be less than the working area of the AxiDraw. If the document does not specify physical units (e.g. the width and height are in pixels only) it will be scaled to the working area. Returns a tuple of (width, height) in inches. """ max_width, max_height = max_area raw_width = tree.get('width') raw_height = tree.get('height') if not (raw_width and raw_height): log.warn("This document does not have width and height attributes. " "Extracting viewbox dimensions.") svg_width = svg_height = None raw_width, raw_height = get_viewbox_dimensions(tree.get('viewBox')) else: svg_width = convert_to_inches(raw_width) svg_height = convert_to_inches(raw_height) if not (svg_width and svg_height): log.warn("This document does not specify physical units. " "Auto-scaling it to fit the drawing area.") width = parse_pixels(raw_width) height = parse_pixels(raw_height) aspect_ratio = width / height max_ratio = max_width / max_height if aspect_ratio > max_ratio: # Wider than working area, constrained by width scale = max_width / width else: # Taller than working area, constrained by height scale = max_height / height svg_width = scale * width svg_height = scale * height assert svg_width <= max_width or math.isclose(svg_width, max_width), \ "SVG width of %s must be <= %s" % (svg_width, max_width) assert svg_height <= max_height or math.isclose(svg_height, max_height), \ "SVG height of %s must be <= %s" % (svg_height, max_height) return svg_width, svg_height
def intersection(L1,L2): #make sure all lines are on the same z plane #assert (math.isclose(L1.p0.z, L1.p1.z, abs_tol=0.0001)) #assert (L2.p0.z == L2.p1.z) #assert (L1.p0.z == L2.p0.z) x1 = L1.p0.x y1 = L1.p0.y x2 = L1.p1.x y2 = L1.p1.y x3 = L2.p0.x y3 = L2.p0.y x4 = L2.p1.x y4 = L2.p1.y xnum = (x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4) xden = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4) ynum = (x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4) yden = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4) try: intersect = Point(xnum/xden,ynum/yden,L1.p0.z) if ((intersect.x >= min(x1,x2)-delta) and (intersect.x <= max(x1,x2)+delta) and (intersect.y >= min(y1,y2)-delta) and (intersect.y <= max(y1,y2)+delta) and (intersect.x >= min(x3,x4)-delta) and (intersect.x <= max(x3,x4)+delta) and (intersect.y >= min(y3,y4)-delta) and (intersect.y <= max(y3,y4)+delta)): return intersect else: return None # return intersect except: return None #given a list of lines that make a manifold perimeter on a slice, #and a percentage of space that should be infill, #returns a list of infill lines (grid pattern) for that slice #assumes print bed area is a square
def calculate_stationary_points(self): fp_raw=[] border=5 #don't check points close to simplex border delta=1e-12 for x,y in zip(self.trimesh.x[border:-border], self.trimesh.y[border:-border]): start=self.xy2ba(x,y) fp_try=np.array([]) sol=scipy.optimize.root(self.f,start,args=(0,),method="hybr")#,xtol=1.49012e-10,maxfev=1000 if sol.success: fp_try=sol.x #check if FP is in simplex if not math.isclose(np.sum(fp_try), 1.,abs_tol=2.e-3): continue if not np.all((fp_try>-delta) & (fp_try <1+delta)):#only if fp in simplex continue else: continue #only add new fixed points to list if not np.array([np.allclose(fp_try,x,atol=1e-7) for x in fp_raw]).any(): fp_raw.append(fp_try.tolist()) #add fixed points in correct coordinates to fixpoints list fp_raw=np.array(fp_raw) if fp_raw.shape[0]>0: self.fixpoints=self.corners.T.dot(np.array(fp_raw).T).T else: self.fixpoints=np.array([])
def getLineEnd(x, yStart, perimeterPoints): """accepts: (x,yStart): position of perimeter point perimeterPoints: list of perimeter points, used to check which one is immediately below (x,yStart) returns: yEnd: when combined into (x,yEnd), it is the coordinates of the point on the perimeter immediately below (x,yStart) NOTE: yEnd is None if there is no such point """ pointsBelow = 0 yEnd = None for index1 in range(len(perimeterPoints)): index2 = (index1 + 1)%len(perimeterPoints) if (x, yStart) == perimeterPoints[index1] \ or (x, yStart) == perimeterPoints[index2]: continue x0, x1 = perimeterPoints[index1][0], perimeterPoints[index2][0] if min(x0, x1)<= x <= max(x0, x1) and x0 != x1: #print(x0, x1) y0, y1 = perimeterPoints[index1][1], perimeterPoints[index2][1] #if math.isclose(x0, x1): # y = max(y0, y1) #print(y,"!") #else: y = (y1-y0)/(x1-x0) * (x-x0) + y0 if y > yStart and (yEnd == None or y < yEnd): pointsBelow += 1 yEnd = y if pointsBelow % 2 == 0: yEnd = None return yEnd
def value(self): normal = self.__value - self.zero_value if self.__value > 0: normal = normal / (self.VAR_MAX - self.zero_value) else: normal = -normal / (self.VAR_MIN - self.zero_value) if isclose(normal, 0, abs_tol=0.04): return 0 return normal
def isclose(a, b, rel_tol=1e-9, abs_tol=0.0): return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
def isclose(a, b, rel_tol=1e-09, abs_tol=0): """ Python 2 implementation of Python 3.5 math.isclose() https://hg.python.org/cpython/file/v3.5.2/Modules/mathmodule.c#l1993 """ # sanity check on the inputs if rel_tol < 0 or abs_tol < 0: raise ValueError("tolerances must be non-negative") # short circuit exact equality -- needed to catch two infinities of # the same sign. And perhaps speeds things up a bit sometimes. if a == b: return True # This catches the case of two infinities of opposite sign, or # one infinity and one finite number. Two infinities of opposite # sign would otherwise have an infinite relative tolerance. # Two infinities of the same sign are caught by the equality check # above. if math.isinf(a) or math.isinf(b): return False # Cast to float to allow decimal.Decimal arguments if not isinstance(a, float): a = float(a) if not isinstance(b, float): b = float(b) # now do the regular computation # this is essentially the "weak" test from the Boost library diff = math.fabs(b - a) result = ((diff <= math.fabs(rel_tol * a)) or (diff <= math.fabs(rel_tol * b)) or (diff <= abs_tol)) return result