我们从Python开源项目中,提取了以下25个代码示例,用于说明如何使用math.acosh()。
def get(self): self.x += self.config.get('dx', 0.1) val = eval(self.config.get('function', 'sin(x)'), { 'sin': math.sin, 'sinh': math.sinh, 'cos': math.cos, 'cosh': math.cosh, 'tan': math.tan, 'tanh': math.tanh, 'asin': math.asin, 'acos': math.acos, 'atan': math.atan, 'asinh': math.asinh, 'acosh': math.acosh, 'atanh': math.atanh, 'log': math.log, 'abs': abs, 'e': math.e, 'pi': math.pi, 'x': self.x }) return self.createEvent('ok', 'Sine wave', val)
def Cn(l): alpha = acosh(l/r) s = 0. for n in range(1, 100): n = float(n) K = n*(n+1)/(2*n-1)/(2*n+3) s += K*((2*sinh((2*n+1)*alpha)+(2*n+1)*sinh(2*alpha))/(4*(sinh((n+.5)*alpha))**2-(2*n+1)**2*(sinh(alpha))**2) - 1) return 1./((4./3.)*sinh(alpha)*s)
def asech(x): if type(x) in dtypes: return math.acosh(1. / x) return functor1(asech, x)
def check_sendall_interrupted(self, with_timeout): # socketpair() is not stricly required, but it makes things easier. if not hasattr(signal, 'alarm') or not hasattr(socket, 'socketpair'): self.skipTest("signal.alarm and socket.socketpair required for this test") # Our signal handlers clobber the C errno by calling a math function # with an invalid domain value. def ok_handler(*args): self.assertRaises(ValueError, math.acosh, 0) def raising_handler(*args): self.assertRaises(ValueError, math.acosh, 0) 1 // 0 c, s = socket.socketpair() old_alarm = signal.signal(signal.SIGALRM, raising_handler) try: if with_timeout: # Just above the one second minimum for signal.alarm c.settimeout(1.5) with self.assertRaises(ZeroDivisionError): signal.alarm(1) c.sendall(b"x" * (1024**2)) if with_timeout: signal.signal(signal.SIGALRM, ok_handler) signal.alarm(1) self.assertRaises(socket.timeout, c.sendall, b"x" * (1024**2)) finally: signal.signal(signal.SIGALRM, old_alarm) c.close() s.close()
def testAcosh(self): self.assertRaises(TypeError, math.acosh) self.ftest('acosh(1)', math.acosh(1), 0) self.ftest('acosh(2)', math.acosh(2), 1.3169578969248168) self.assertRaises(ValueError, math.acosh, 0) self.assertRaises(ValueError, math.acosh, -1) self.assertEqual(math.acosh(INF), INF) self.assertRaises(ValueError, math.acosh, NINF) self.assertTrue(math.isnan(math.acosh(NAN)))
def check_sendall_interrupted(self, with_timeout): # socketpair() is not strictly required, but it makes things easier. if not hasattr(signal, 'alarm') or not hasattr(socket, 'socketpair'): self.skipTest("signal.alarm and socket.socketpair required for this test") # Our signal handlers clobber the C errno by calling a math function # with an invalid domain value. def ok_handler(*args): self.assertRaises(ValueError, math.acosh, 0) def raising_handler(*args): self.assertRaises(ValueError, math.acosh, 0) 1 // 0 c, s = socket.socketpair() old_alarm = signal.signal(signal.SIGALRM, raising_handler) try: if with_timeout: # Just above the one second minimum for signal.alarm c.settimeout(1.5) with self.assertRaises(ZeroDivisionError): signal.alarm(1) c.sendall(b"x" * test_support.SOCK_MAX_SIZE) if with_timeout: signal.signal(signal.SIGALRM, ok_handler) signal.alarm(1) self.assertRaises(socket.timeout, c.sendall, b"x" * test_support.SOCK_MAX_SIZE) finally: signal.signal(signal.SIGALRM, old_alarm) c.close() s.close()
def check_sendall_interrupted(self, with_timeout): # socketpair() is not stricly required, but it makes things easier. if not hasattr(signal, 'alarm') or not hasattr(socket, 'socketpair'): self.skipTest("signal.alarm and socket.socketpair required for this test") # Our signal handlers clobber the C errno by calling a math function # with an invalid domain value. def ok_handler(*args): self.assertRaises(ValueError, math.acosh, 0) def raising_handler(*args): self.assertRaises(ValueError, math.acosh, 0) 1 // 0 c, s = socket.socketpair() old_alarm = signal.signal(signal.SIGALRM, raising_handler) try: if with_timeout: # Just above the one second minimum for signal.alarm c.settimeout(1.5) with self.assertRaises(ZeroDivisionError): signal.alarm(1) c.sendall(b"x" * support.SOCK_MAX_SIZE) if with_timeout: signal.signal(signal.SIGALRM, ok_handler) signal.alarm(1) self.assertRaises(socket.timeout, c.sendall, b"x" * support.SOCK_MAX_SIZE) finally: signal.alarm(0) signal.signal(signal.SIGALRM, old_alarm) c.close() s.close()
def acosh(node): return merge([node], math.acosh)
def check_sendall_interrupted(self, with_timeout): # socketpair() is not stricly required, but it makes things easier. if not hasattr(signal, 'alarm') or not hasattr(socket, 'socketpair'): self.skipTest("signal.alarm and socket.socketpair required for this test") # Our signal handlers clobber the C errno by calling a math function # with an invalid domain value. def ok_handler(*args): self.assertRaises(ValueError, math.acosh, 0) def raising_handler(*args): self.assertRaises(ValueError, math.acosh, 0) 1 // 0 c, s = socket.socketpair() old_alarm = signal.signal(signal.SIGALRM, raising_handler) try: if with_timeout: # Just above the one second minimum for signal.alarm c.settimeout(1.5) with self.assertRaises(ZeroDivisionError): signal.alarm(1) c.sendall(b"x" * test_support.SOCK_MAX_SIZE) if with_timeout: signal.signal(signal.SIGALRM, ok_handler) signal.alarm(1) self.assertRaises(socket.timeout, c.sendall, b"x" * test_support.SOCK_MAX_SIZE) finally: signal.signal(signal.SIGALRM, old_alarm) c.close() s.close()
def test_acosh(self): self.assertEqual(session.source("Test", x=real(3.14, 6.5)).type("acosh(x)"), real(math.acosh(3.14), math.acosh(6.5))) self.assertEqual(session.source("Test", x=real(almost(1), 6.5)).type("acosh(x)"), real(almost(0), math.acosh(6.5))) self.assertEqual(session.source("Test", x=real(1, 6.5)).type("acosh(x)"), real(0, math.acosh(6.5))) self.assertRaises(FemtocodeError, lambda: session.source("Test", x=real(0, 6.5)).type("acosh(x)")) self.assertRaises(FemtocodeError, lambda: session.source("Test", x=real(0, 0.5)).type("acosh(x)")) self.assertRaises(FemtocodeError, lambda: session.source("Test", x=real(0, almost(0.5))).type("acosh(x)")) for entry in numerical.toPython(ylim = "ylim", a = "acosh(ylim + 1)").submit(): self.assertEqual(entry.a, math.acosh(entry.ylim + 1))
def acosh(arg): return generate_intrinsic_function_expression(arg, 'acosh', math.acosh)
def __init__(self): ParameterCell.__init__(self) self.a = None self.b = None self.c = None self.d = None self.formula = "" self._previous_values = [None, None, None, None] self._formula_globals = globals(); self._formula_locals = { "exp":math.exp, "pow":math.pow, "log":math.log, "log10":math.log10, "acos":math.acos, "asin":math.asin, "atan":math.atan, "atan2":math.atan2, "cos":math.cos, "hypot":math.hypot, "sin":math.sin, "tan":math.tan, "degrees":math.degrees, "radians":math.radians, "acosh":math.acosh, "asinh":math.asinh, "atanh":math.atanh, "cosh":math.cosh, "sinh":math.sinh, "tanh":math.tanh, "pi":math.pi, "e":math.e, "ceil":math.ceil, "sign":ParameterMathFun.signum, "abs":math.fabs, "floor":math.floor, "mod":math.fmod, "sqrt":math.sqrt, "curt":ParameterMathFun.curt, "str":str, "int":int, "float":float }
def test_one(): from math import sin, cos, tan, asin, acos, atan from math import sinh, cosh, tanh, asinh, acosh, atanh from math import exp, expm1, log, log10, log1p, sqrt, lgamma from math import fabs, ceil, floor, trunc, erf, erfc try: from math import log2 except ImportError: def log2(x): return log(x) / log(2) def wrapper(f, v): try: return f(v) except ValueError: if f == sqrt: return float('nan') if v >= 0: return float('inf') else: return -float('inf') def compare(a, b): if isfinite(a) and isfinite(b): return assert_almost_equals(a, b) return str(a) == str(b) for f in [sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, exp, expm1, log, log2, log10, log1p, sqrt, lgamma, fabs, ceil, floor, trunc, erf, erfc]: for p in [0.5, 1]: a = random_lst(p=p) b = SparseArray.fromlist(a) c = getattr(b, f.__name__)() res = [wrapper(f, x) for x in a] index = [k for k, v in enumerate(res) if v != 0] res = [x for x in res if x != 0] print(f, p, c.non_zero, len(res)) assert c.non_zero == len(res) [assert_almost_equals(v, w) for v, w in zip(index, c.index)] [compare(v, w) for v, w in zip(res, c.data)]
def V_horiz_conical(D, L, a, h, headonly=False): r'''Calculates volume of a tank with conical ends, according to [1]_. .. math:: V_f = A_fL + \frac{2aR^2}{3}K, \;\;0 \le h < R\\ V_f = A_fL + \frac{2aR^2}{3}\pi/2,\;\; h = R\\ V_f = A_fL + \frac{2aR^2}{3}(\pi-K), \;\; R< h \le 2R K = \cos^{-1} M + M^3\cosh^{-1} \frac{1}{M} - 2M\sqrt{1 - M^2} M = \left|\frac{R-h}{R}\right| Af = R^2\cos^{-1}\frac{R-h}{R} - (R-h)\sqrt{2Rh - h^2} Parameters ---------- D : float Diameter of the main cylindrical section, [m] L : float Length of the main cylindrical section, [m] a : float Distance the cone head extends on one side, [m] h : float Height, as measured up to where the fluid ends, [m] headonly : bool, optional Function returns only the volume of a single head side if True Returns ------- V : float Volume [m^3] Examples -------- Matching example from [1]_, with inputs in inches and volume in gallons. >>> V_horiz_conical(D=108., L=156., a=42., h=36)/231 2041.1923581273443 References ---------- .. [1] Jones, D. "Calculating Tank Volume." Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF''' R = D/2. Af = R*R*acos((R-h)/R) - (R-h)*(2*R*h - h*h)**0.5 M = abs((R-h)/R) if h == R: Vf = a*R*R/3.*pi else: K = acos(M) + M*M*M*acosh(1./M) - 2.*M*(1.-M*M)**0.5 if 0. <= h < R: Vf = 2.*a*R*R/3*K elif R < h <= 2*R: Vf = 2.*a*R*R/3*(pi - K) if headonly: Vf = 0.5*Vf else: Vf += Af*L return Vf