Python matplotlib.cm 模块,get_cmap() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.cm.get_cmap()

项目:geopyspark    作者:locationtech-labs    | 项目源码 | 文件源码
def get_colors_from_matplotlib(ramp_name, num_colors=1<<8):
    """Returns a list of color breaks from the color ramps defined by Matplotlib.

    Args:
        ramp_name (str): The name of a matplotlib color ramp. See the matplotlib documentation for
            a list of names and details on each color ramp.
        num_colors (int, optional): The number of color breaks to derive from the named map.

    Returns:
        [int]
    """

    try:
        import colortools
        import matplotlib.cm as mpc
    except:
       raise Exception('matplotlib>=2.0.0 and colortools>=0.1.2 required')

    ramp = mpc.get_cmap(ramp_name)
    return  [struct.unpack('>L', bytes(map(lambda x: int(x*255), ramp(x / (num_colors - 1)))))[0] for x in range(0, num_colors)]
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _make_plot(self):
        x, y, data, C = self.x, self.y, self.data, self.C
        ax = self.axes[0]
        # pandas uses colormap, matplotlib uses cmap.
        cmap = self.colormap or 'BuGn'
        cmap = self.plt.cm.get_cmap(cmap)
        cb = self.kwds.pop('colorbar', True)

        if C is None:
            c_values = None
        else:
            c_values = data[C].values

        ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap,
                  **self.kwds)
        if cb:
            img = ax.collections[0]
            self.fig.colorbar(img, ax=ax)
项目:BlueLines    作者:JacksYou    | 项目源码 | 文件源码
def show_hexbin(self, query):
        """shows hexbin plot over map

        Args: 
            query: name of sql
        """
        self.load()
        data = pd.read_sql_query(con=self.con, sql=query)
        points = self.gen_points(data, self.data_map)
        hx = self.base_map.hexbin(
            np.array([geom.x for geom in points]),
            np.array([geom.y for geom in points]),
            gridsize=275,
            bins='log',
            mincnt=1,
            edgecolor='none',
            alpha=1.,
            lw=0.2,
            cmap=plt.get_cmap('afmhot'))
        plt.tight_layout()
        plt.show()
项目:BlueLines    作者:JacksYou    | 项目源码 | 文件源码
def split_colormap(self, colormap, n):
        """splits map by colour

        Args:
            colormap: chloropleth map
            n: colours
        Returns:
            portion of split map
        """
        if type(colormap) == str:
            colormap = cm.get_cmap(colormap)
        colors = np.concatenate((np.linspace(0, 1., n), (0., 0., 0., 0.)))
        rgb_alpha = colormap(colors)
        indices = np.linspace(0, 1., n + 1)
        color_dict = {}
        for color, key in enumerate(('red', 'green', 'blue')):
            color_dict[key] = [(indices[i], rgb_alpha[i - 1, color], rgb_alpha[i, color]) for i in range(n + 1)]
        return LinearSegmentedColormap(colormap.name + "_%d" % n, color_dict, 1024)
项目:crime_prediction    作者:livenb    | 项目源码 | 文件源码
def cmap_discretize(cmap, N):
    """
    Return a discrete colormap from the continuous colormap cmap.

        cmap: colormap instance, eg. cm.jet.
        N: number of colors.

    Example
        x = resize(arange(100), (5,100))
        djet = cmap_discretize(cm.jet, 5)
        imshow(x, cmap=djet)

    """
    if type(cmap) == str:
        cmap = get_cmap(cmap)
    colors_i = np.concatenate((np.linspace(0, 1., N), (0., 0., 0., 0.)))
    colors_rgba = cmap(colors_i)
    indices = np.linspace(0, 1., N + 1)
    cdict = {}
    for ki, key in enumerate(('red', 'green', 'blue')):
        cdict[key] = [(indices[i], colors_rgba[i - 1, ki], colors_rgba[i, ki]) for i in xrange(N + 1)]
    return LinearSegmentedColormap(cmap.name + "_%d" % N, cdict, 1024)
项目:TonsleyLEDManager    作者:JonnoFTW    | 项目源码 | 文件源码
def __init__(self, dims):
        self.width = dims[0]
        self.height = dims[1]
        try:
            from plugins.fonts import Font
        except ImportError:
            from fonts import Font
        import numpy as np
        from matplotlib import cm
        from datetime import datetime
        self.dt = datetime
        self.np = np
        cmap = cm.get_cmap('magma', 256)

        self.cols = (cmap.colors * 255)[0:, :3].astype(np.uint8)
        self.minute = datetime.now().minute
        self.order = np.arange(0, 3)
        try:
            self.fnt = Font('slkscr.ttf', 16)
        except:
            import urllib
            print("Downloading font")
            urllib.urlretrieve('https://www.dropbox.com/s/adt959l9bx0ojlj/slkscr.ttf?dl=1', 'slkscr.ttf')
            self.fnt = Font('slkscr.ttf', 16)
项目:TonsleyLEDManager    作者:JonnoFTW    | 项目源码 | 文件源码
def __init__(self, board_dimensions):
        self.board_dimensions = board_dimensions
        import numpy as np
        self.np = np
        def rbool():
            return np.random.choice([True, False])
        self.sorted = rbool()
        self.facing = rbool()
        self.face_in = rbool()
        try:
            from matplotlib import cm
            numcolors = 9012
            color_maps = ['rainbow', 'flag', 'terrain', 'ocean', 'gist_earth', 'viridis', 'gnuplot', 'brg', 'cubehelix', 'CMRmap']
            cmap = cm.get_cmap(np.random.choice(color_maps))
            self.colors = np.array(
                [map(lambda x: int(x * 255), list(cmap(1. * i / numcolors))[:-1]) for i in range(numcolors)])
        except ImportError:
            self.colors = np.random.randint(0, 255, [9012, 3])
        self.pixels = self.np.zeros((self.board_dimensions[0], self.board_dimensions[1], 3)).astype(self.np.uint8)
项目:superpixelDepth    作者:slundqui    | 项目源码 | 文件源码
def plotEval(image, segments, labels, est, outFilename):
   estImg = fillSegments(segments, est, labels)

   colormap = cm.get_cmap('jet')

   f, ax = plt.subplots(2, 1)
   ax[0].imshow(image)
   ax[0].set_title("Image")
   axx=ax[1].imshow(estImg, cmap=colormap)
   ax[1].set_title("EST")

   f.subplots_adjust(right=.8)
   cbar_ax = f.add_axes([0.85, 0.15, 0.05, 0.7])
   f.colorbar(axx, cax=cbar_ax)
   plt.savefig(outFilename)

   plt.close(f)
项目:wrfplot    作者:liamtill    | 项目源码 | 文件源码
def thetaE(): # plot theta-e
    # create figure
    plt.figure(figsize=(8,8))
    theta = nc.variables['T'][time] #perturbation potential temperature (theta-t0)
    theta0 = nc.variables['T00'][0] #base state theta
    theta = theta[0] + theta0 # total theta
    psfchpa = conv.pa_to_hpa(psfc[time])
    t2c = conv.k_to_c(t2[time]) #convert temp to celcius
    es = calc.calc_es(t2c)
    ws = calc.calc_ws(es, psfchpa)     
    thetae = calc.calc_thetae(theta, t2[time], ws)
    clevs = np.arange(260,372,4) # set by max and min of data    
    cs = m.contourf(x,y,thetae,clevs,cmap=cm.get_cmap('gist_ncar'))
    title = "Theta-e"
    ftitle = 'thetae-'
    cblabel = 'K'
    cbticks = True
    makeplot(cs,title,cblabel,clevs,cbticks,ftitle)
项目:wrfplot    作者:liamtill    | 项目源码 | 文件源码
def h75lr(): # 700-500mb lapse rates
    # create figure
    plt.figure(figsize=(8,8))
    pb = nc.variables['PB'][time] #base state pressure, Pa
    p = nc.variables['P'][time] # perturbation pressure, Pa
    totalp = pb + p # total pressure in Pa
    theta = nc.variables['T'][time] #perturbation potential temperature (theta-t0)
    theta0 = nc.variables['T00'][0] #base state theta
    totalTheta = theta + theta0 # total potential temp
    totalT= conv.k_to_c(calc.theta_to_temp(totalTheta, totalp)) # calc temp in deg C
    # interp temps to levels
    totalT700 = funcs.linear_interp(totalT,totalp,700)
    totalT500 = funcs.linear_interp(totalT,totalp,500)
    # calc h7-h5 lapse rates
    lr = totalT700 - totalT500
    clevs = np.arange(5,10.5,.5) # conditionally unstable levels
    cs = m.contourf(x,y,lr,clevs,cmap=cm.get_cmap('gist_ncar'))
    title = "H7-H5 Lapse Rates"
    ftitle = 'h75lr-'
    cblabel = r'$\degree$C'
    cbticks = True
    makeplot(cs,title,cblabel,clevs,cbticks,ftitle)
项目:wrfplot    作者:liamtill    | 项目源码 | 文件源码
def absvort500(): # plot 500mb absolute vorticity
    # create figure
    plt.figure(figsize=(8,8))
    pb = nc.variables['PB'][time] #base state pressure, Pa
    p = nc.variables['P'][time] # perturbation pressure, Pa
    totalp = pb + p # total pressure in Pa
    U = funcs.unstagger(nc.variables['U'][time],'U') # U wind component UNSTAGGERED
    V = funcs.unstagger(nc.variables['V'][time],'V') # V wind component
    fcoriolis = calc.calc_fcoriolis(xlat[0])
    uinterp = funcs.linear_interp(U,totalp,500) #interp to 500mb
    vinterp = funcs.linear_interp(V,totalp,500) 
    vertvort = calc.calc_vertvort(uinterp, vinterp, dx)
    avort = vertvort + fcoriolis # absolute vorticity 
    avort = np.multiply(avort, 1e5) # scale up for levels
    clevs = np.arange(-6, 52, 2)    
    cs = m.contourf(x,y,avort,clevs,cmap=cm.get_cmap('gist_ncar'))
    title = '500mb Absolute Vorticity'
    ftitle = '500absvort-' 
    cblabel = r'$10^{-5} s^{-1}$'
    cbticks = True
    makeplot(cs,title,cblabel,clevs,cbticks,ftitle)
项目:wrfplot    作者:liamtill    | 项目源码 | 文件源码
def vertvol(): # plot the vertical velocity at levels. NEEDS CORRECTING TO VERTICAL MOTION OMEGA EQUATION
    W = funcs.unstagger(nc.variables['W'][time],'W') # unstaggered vertical velocity
    pb = nc.variables['PB'][time] #base state pressure, Pa
    p = nc.variables['P'][time] # perturbation pressure, Pa
    totalp = pb + p # total pressure in Pa

    levels = opt.lvl.split(',') # get list of levels
    for level in levels: 
        plt.figure(figsize=(8,8)) #create fig for each plot
        level = int(level) # make it int
        Wfinal = funcs.linear_interp(W,totalp,level) # interpolate W to levels
        clevs = np.arange(-2.0,2.2,0.2)        
        cs = m.contourf(x,y,Wfinal,clevs,cmap=cm.get_cmap('gist_ncar'))
        level = str(level)
        title = level+'mb Vertical Velocity'
        ftitle = level+'mbvv-' 
        cblabel = r'$ms^{-1}$'
        cbticks = True
        makeplot(cs,title,cblabel,clevs,cbticks,ftitle)
项目:siHMM    作者:Ardavans    | 项目源码 | 文件源码
def plot(self):
        plt.figure()
        cmap = cm.get_cmap()
        used_labels = self._get_occupied()
        num_labels = len(used_labels)

        label_colors = {}
        for idx,label in enumerate(used_labels):
            label_colors[label] = idx/(num_labels-1. if num_labels > 1 else 1.)

        for subfigidx,l in enumerate(self.labels_list):
            plt.subplot(len(self.labels_list),1,1+subfigidx)
            # TODO assuming data is 2D
            for label in used_labels:
                if label in l.z:
                    plt.plot(l.data[l.z==label,0],l.data[l.z==label,1],
                            color=cmap(label_colors[label]),ls='None',marker='x')
项目:mindpark    作者:danijar    | 项目源码 | 文件源码
def _process_metric(self, ax, metric):
        if not metric.data.size:
            ax.tick_params(colors=(0, 0, 0, 0))
            ax.set_axis_bgcolor(cm.get_cmap('viridis')(0))
            divider = make_axes_locatable(ax)
            divider.append_axes('right', size='7%', pad=0.1).axis('off')
            return
        domain = self._domain(metric)
        categorical = self._is_categorical(metric.data)
        if metric.data.shape[1] == 1 and not categorical:
            self._plot_scalar(ax, domain, metric.data[:, 0])
        elif metric.data.shape[1] == 1:
            indices = metric.data[:, 0].astype(int)
            min_, max_ = indices.min(), indices.max()
            count = np.eye(max_ - min_ + 1)[indices - min_]
            self._plot_distribution(ax, domain, count)
        elif metric.data.shape[1] > 1:
            self._plot_counts(ax, domain, metric.data)
项目:pydisp    作者:dimatura    | 项目源码 | 文件源码
def scalar_preprocess(img, **kwargs):
    """ vmin, vmax, clip, cmap """
    vmin = kwargs.get('vmin')
    vmax = kwargs.get('vmax')
    clip = kwargs.get('clip')
    cmap = kwargs.get('cmap', 'jet')
    # TODO customization
    normalizer = mpl.colors.Normalize(vmin, vmax, clip)
    nimg = normalizer(img)
    cmap = cm.get_cmap(cmap)
    cimg = cmap(nimg)[:, :, :3]  # ignore alpha
    simg = (255*cimg).astype(np.uint8)
    return simg
项目:bkheatmap    作者:wwliao    | 项目源码 | 文件源码
def assign_color(df, value_var, colormap):
    vmax = df[value_var].abs().max()
    vmin = vmax * -1
    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
    df["color"] = df.apply(lambda s: mpl.colors.rgb2hex(
                           cm.get_cmap(colormap)(norm(s[value_var]))),
                           axis=1)
    return df
项目:bkheatmap    作者:wwliao    | 项目源码 | 文件源码
def assign_cat_color(df, cat_var, colormap):
    color = {}
    norm = mpl.colors.Normalize(vmin=0, vmax=len(df[cat_var].unique())-1)
    for i, cat in enumerate(df[cat_var].unique()):
        color[cat] = mpl.colors.rgb2hex(cm.get_cmap(colormap)(norm(i)))
    df["color"] = df.apply(lambda s: color[s[cat_var]], axis=1)
    return df
项目:bkheatmap    作者:wwliao    | 项目源码 | 文件源码
def get_colorbar_source(df, value_var, colormap):
    vmax = df[value_var].abs().max()
    vmin = vmax * -1
    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
    value = np.linspace(vmin, vmax, num=50)
    color = []
    for v in value:
        color.append(mpl.colors.rgb2hex(cm.get_cmap(colormap)(norm(v))))
    return vmax*2/49.0, ColumnDataSource(data=dict(value=value, color=color))
项目:nxviz    作者:ericmjl    | 项目源码 | 文件源码
def compute_node_colors(self):
        """Compute the node colors. Also computes the colorbar."""
        data = [self.graph.node[n][self.node_color] for n in self.nodes]
        data_reduced = sorted(list(set(data)))
        dtype = infer_data_type(data)
        n_grps = num_discrete_groups(data)

        if dtype == 'categorical' or dtype == 'ordinal':
            cmap = get_cmap(cmaps['Accent_{0}'.format(n_grps)].mpl_colormap)
        elif dtype == 'continuous' and not is_data_diverging(data):
            cmap = get_cmap(cmaps['continuous'].mpl_colormap)
        elif dtype == 'continuous' and is_data_diverging(data):
            cmap = get_cmap(cmaps['diverging'].mpl_colormap)

        for d in data:
            idx = data_reduced.index(d) / n_grps
            self.node_colors.append(cmap(idx))

        # Add colorbar if required.
        logging.debug('length of data_reduced: {0}'.format(len(data_reduced)))
        logging.debug('dtype: {0}'.format(dtype))
        if len(data_reduced) > 1 and dtype == 'continuous':
            self.sm = plt.cm.ScalarMappable(cmap=cmap,
                                            norm=plt.Normalize(vmin=min(data_reduced),  # noqa
                                                               vmax=max(data_reduced)   # noqa
                                                               )
                                            )
            self.sm._A = []
项目:GrouPy    作者:tscohen    | 项目源码 | 文件源码
def plot_z2(f, fignum=None, range=None, color_map='gray'):

    # plt.figure(fignum)

    if range is None:
        plt.imshow(f, interpolation='nearest', cmap=cm.get_cmap(color_map))
    else:
        plt.imshow(f, interpolation='nearest', cmap=cm.get_cmap(color_map),
                   vmin=range[0], vmax=range[1])

    plt.xticks(np.arange(f.shape[1]), [str(i) for i in np.arange(f.shape[1])])
    plt.yticks(np.arange(f.shape[0]), [str(i) for i in np.arange(f.shape[0])])
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def show_label_array(ax, label_array, cmap=None, aspect=None,interpolation='nearest',**kwargs):
    """
    YG. Sep 26, 2017
    Modified show_label_array(ax, label_array, cmap=None, **kwargs)
        from https://github.com/Nikea/xray-vision/blob/master/xray_vision/mpl_plotting/roi.py
    Display a labeled array nicely
    Additional kwargs are passed through to `ax.imshow`.
    If `vmin` is in kwargs, it is clipped to minimum of 0.5.
    Parameters
    ----------
    ax : Axes
        The `Axes` object to add the artist too
    label_array: ndarray
        Expected to be an unsigned integer array.  0 is background,
        positive integers label region of interest
    cmap : str or colormap, optional
        Color map to use, defaults to 'Paired'
    Returns
    -------
    img : AxesImage
        The artist added to the axes
    """
    if cmap is None:
        cmap = 'viridis'
    #print(cmap)
    _cmap = copy.copy((mcm.get_cmap(cmap)))
    _cmap.set_under('w', 0)
    vmin = max(.5, kwargs.pop('vmin', .5))
    im = ax.imshow(label_array, cmap=cmap,
                   interpolation=interpolation,
                   vmin=vmin,
                   **kwargs)    
    if aspect is None:
        ax.set_aspect(aspect='auto')
        #ax.set_aspect('equal')
    return im
项目:FreeDiscovery    作者:FreeDiscovery    | 项目源码 | 文件源码
def _make_cmap(cmap_name='jet', alpha=0.2, filter_ratio=0.5):
    """Create a colormap which will be used to adding color spans to text

    Parameters
    ----------
    cmap_name : str
        name of colormap, see here for all possible values: http://matplotlib.org/users/colormaps.html
    alpha : float
        color's transparency
    filter_ratio : float
        make fully transparent (1 - filter_ratio) of the color bar

    Returns
    -------
    matplotlib.colors.LinearSegmentedColormap
        final color map with transparency
    """
    import matplotlib as mpl
    import matplotlib.cm as cm

    cmap = cm.get_cmap(cmap_name)

    # Extract colormap's colors and set new alpha
    cmap_array = cmap(np.arange(cmap.N))
    N = cmap_array.shape[0]
    if filter_ratio is not None:
        if not 0 <= filter_ratio <= 1:
            raise ValueError('filter_ratio = {} must be in the [0, 1] range'.format(filter_ratio))
        nf_ratio = 1 - filter_ratio
        cmap_array[:, -1] = 0.0
        cmap_array[:int(nf_ratio*N / 2), -1] = alpha
        cmap_array[-int(nf_ratio*N / 2):, -1] = alpha
    else:
        cmap_array[:, -1] = alpha


    # Create new colormap from the array with modified alpha
    cmap_with_trancparency = mpl.colors.ListedColormap(cmap_array)
    return cmap_with_trancparency
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def _extract_lookup_table(cmap_name):
    cmap = mcm.get_cmap(cmap_name)
    if not cmap._isinit: cmap._init()
    r = cmap._lut[:-3, 0]
    g = cmap._lut[:-3, 1]
    b = cmap._lut[:-3, 2]
    a = np.ones(b.shape)
    return [r, g, b, a]
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def cmap_cycle(event_coll, event):
    """Change colormap"""
    cmap = ['arbre', 'algae', 'kamae', 'viridis', 'inferno', 'magma']
    cmap = cm.get_cmap(random.choice(cmap))
    event_coll.camera.cmap = np.array(cmap(np.linspace(0, 1, 256)),
        dtype=np.float32)
    event_coll.camera.cmap_new = True
    print("Setting colormap to {}".format(cmap.name))
    return True
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def __init__(self,
                 position=(0.0, 0.0, 1.0),
                 focus=(0.0, 0.0, 0.0),
                 up=(0.0, 1.0, 0.0),
                 fov=45.0, near_plane=0.01, far_plane=20.0,
                 aspect_ratio=8.0/6.0):
        self.position = np.array(position)
        self.focus = np.array(focus)
        self.up = np.array(up)
        self.fov = fov
        self.near_plane = near_plane
        self.far_plane = far_plane
        self.aspect_ratio = aspect_ratio

        # set cmap
        cmap = cm.get_cmap(ytcfg.get("yt", "default_colormap"))
        self.cmap = np.array(cmap(np.linspace(0, 1, 256)), dtype=np.float32)
        self.cmap_min = 1e55
        self.cmap_max = -1e55
        self.cmap_log = True
        self.cmap_new = True

        self.view_matrix = np.zeros((4, 4), dtype=np.float32)
        self.projection_matrix = np.zeros((4, 4), dtype=np.float32)
        self.orientation = np.zeros((4, 4), dtype=np.float32)
        self.proj_func = get_perspective_matrix
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plot_interpolated(self, aperture_centers, aperture_means):

        """
        This function ...
        :param aperture_centers:
        :param aperture_means:
        :return:
        """

        x_values = np.array([center.x for center in aperture_centers])
        y_values = np.array([center.y for center in aperture_centers])

        x_ticks = np.arange(0, self.frame.xsize, 1)
        y_ticks = np.arange(0, self.frame.ysize, 1)
        z_grid = mlab.griddata(x_values, y_values, aperture_means, x_ticks, y_ticks)

        self.sky = Frame(z_grid)

        from matplotlib.backends import backend_agg as agg
        from matplotlib import cm

        # plot
        #fig = Figure()  # create the figure
        fig = plt.figure()
        agg.FigureCanvasAgg(fig)  # attach the rasterizer
        ax = fig.add_subplot(1, 1, 1)  # make axes to plot on
        ax.set_title("Interpolated Contour Plot of Experimental Data")
        ax.set_xlabel("X")
        ax.set_ylabel("Y")

        cmap = cm.get_cmap("hot")  # get the "hot" color map
        contourset = ax.contourf(x_ticks, y_ticks, z_grid, 10, cmap=cmap)

        cbar = fig.colorbar(contourset)
        cbar.set_ticks([0, 100])
        fig.axes[-1].set_ylabel("Z")  # last axes instance is the colorbar

        plt.show()

    # -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plot_interpolated(self, aperture_centers, aperture_means):

        """
        This function ...
        :param aperture_centers:
        :param aperture_means:
        :return:
        """

        x_values = np.array([center.x for center in aperture_centers])
        y_values = np.array([center.y for center in aperture_centers])

        x_ticks = np.arange(0, self.frame.xsize, 1)
        y_ticks = np.arange(0, self.frame.ysize, 1)
        z_grid = mlab.griddata(x_values, y_values, aperture_means, x_ticks, y_ticks)

        self.sky = Frame(z_grid)

        from matplotlib.backends import backend_agg as agg
        from matplotlib import cm

        # plot
        #fig = Figure()  # create the figure
        fig = plt.figure()
        agg.FigureCanvasAgg(fig)  # attach the rasterizer
        ax = fig.add_subplot(1, 1, 1)  # make axes to plot on
        ax.set_title("Interpolated Contour Plot of Experimental Data")
        ax.set_xlabel("X")
        ax.set_ylabel("Y")

        cmap = cm.get_cmap("hot")  # get the "hot" color map
        contourset = ax.contourf(x_ticks, y_ticks, z_grid, 10, cmap=cmap)

        cbar = fig.colorbar(contourset)
        cbar.set_ticks([0, 100])
        fig.axes[-1].set_ylabel("Z")  # last axes instance is the colorbar

        plt.show()

    # -----------------------------------------------------------------
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def make_overlay(image, gt_prob):

    mycm = cm.get_cmap('bwr')

    overimage = mycm(gt_prob, bytes=True)
    output = 0.4*overimage[:,:,0:3] + 0.6*image

    return output
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def make_overlay(image, gt_prob):

    mycm = cm.get_cmap('bwr')

    overimage = mycm(gt_prob, bytes=True)
    output = 0.4*overimage[:, :, 0:3] + 0.6*image

    return output
项目:marvin    作者:sdss    | 项目源码 | 文件源码
def _string_to_cmap(cm_name):
    """Return colormap given name.

    Parameters:
        cm_name (str):
            Name of colormap.

    Returns:
        `matplotlib.cm <http://matplotlib.org/api/cm_api.html>`_ (colormap)
        object
    """
    if isinstance(cm_name, str):
        if 'linearlab' in cm_name:
            try:
                cmap, cmap_r = linearlab()
            except IOError:
                cmap = cm.viridis
            else:
                if '_r' in cm_name:
                    cmap = cmap_r
        else:
            cmap = cm.get_cmap(cm_name)
    elif isinstance(cm_name, ListedColormap) or isinstance(cm_name, LinearSegmentedColormap):
        cmap = cm_name
    else:
        raise MarvinError('{} is not a valid cmap'.format(cm_name))

    return cmap
项目:PaleoView    作者:GlobalEcologyLab    | 项目源码 | 文件源码
def on_mappable_changed(self, mappable):
        """
        Updates this colorbar to match the mappable's properties.

        Typically this is automatically registered as an event handler
        by :func:`colorbar_factory` and should not be called manually.

        """
        self.set_cmap(mappable.get_cmap())
        self.set_clim(mappable.get_clim())
        self.update_normal(mappable)
项目:PaleoView    作者:GlobalEcologyLab    | 项目源码 | 文件源码
def on_mappable_changed(self, mappable):
        """
        Updates this colorbar to match the mappable's properties.

        Typically this is automatically registered as an event handler
        by :func:`colorbar_factory` and should not be called manually.

        """
        self.set_cmap(mappable.get_cmap())
        self.set_clim(mappable.get_clim())
        self.update_normal(mappable)
项目:mriqc    作者:poldracklab    | 项目源码 | 文件源码
def spikesplot_cb(position, cmap='viridis', fig=None):
    # Add colorbar
    if fig is None:
        fig = plt.gcf()

    cax = fig.add_axes(position)
    cb = ColorbarBase(cax, cmap=get_cmap(cmap), spacing='proportional',
                      orientation='horizontal', drawedges=False)
    cb.set_ticks([0, 0.5, 1.0])
    cb.set_ticklabels(['Inferior', '(axial slice)', 'Superior'])
    cb.outline.set_linewidth(0)
    cb.ax.xaxis.set_tick_params(width=0)
    return cax
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def colormap_lut(color = 'viridis', ncolors = None):
   # build lookup table
  if color == 'r': 
    pos = np.array([0.0, 1.0])
    color = np.array([[0,0,0,255], [255,0,0,255]], dtype=np.ubyte)
    ncolors = 512;
  elif color =='g':
    pos = np.array([0.0, 1.0])
    color = np.array([[0,0,0,255], [0,255,0,255]], dtype=np.ubyte)
    ncolors = 512;
  elif color =='b':
    pos = np.array([0.0, 1.0])
    color = np.array([[0,0,0,255], [0,0,255,255]], dtype=np.ubyte)
    ncolors = 512;
  else:
    #pos = np.array([0.0, 0.25, 0.5, 0.75, 1.0])
    #color = np.array([[0,0,255,255], [0,255,255,255],  [0,255,0,255], [255,255,0,255], [255,0,0,255]], dtype=np.ubyte)
    #color = np.array([[0,0,128,255], [0,255,255,255],  [0,255,0,255], [255,255,0,255], [128,0,0,255]], dtype=np.ubyte)
    cmap = cm.get_cmap(color);
    if ncolors is None:
      ncolors = cmap.N;
    pos = np.linspace(0.0, 1.0, ncolors);
    color = cmap(pos, bytes = True);

  cmap = pg.ColorMap(pos, color)
  return cmap.getLookupTable(0.0, 1.0, ncolors);
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def colormap_lut(color = 'viridis', ncolors = None):
   # build lookup table
  if color == 'r': 
    pos = np.array([0.0, 1.0])
    color = np.array([[0,0,0,255], [255,0,0,255]], dtype=np.ubyte)
    ncolors = 512;
  elif color =='g':
    pos = np.array([0.0, 1.0])
    color = np.array([[0,0,0,255], [0,255,0,255]], dtype=np.ubyte)
    ncolors = 512;
  elif color =='b':
    pos = np.array([0.0, 1.0])
    color = np.array([[0,0,0,255], [0,0,255,255]], dtype=np.ubyte)
    ncolors = 512;
  else:
    #pos = np.array([0.0, 0.25, 0.5, 0.75, 1.0])
    #color = np.array([[0,0,255,255], [0,255,255,255],  [0,255,0,255], [255,255,0,255], [255,0,0,255]], dtype=np.ubyte)
    #color = np.array([[0,0,128,255], [0,255,255,255],  [0,255,0,255], [255,255,0,255], [128,0,0,255]], dtype=np.ubyte)
    cmap = cm.get_cmap(color);
    if ncolors is None:
      ncolors = cmap.N;
    pos = np.linspace(0.0, 1.0, ncolors);
    color = cmap(pos, bytes = True);

  cmap = pg.ColorMap(pos, color)
  return cmap.getLookupTable(0.0, 1.0, ncolors);
项目:SCaIP    作者:simonsfoundation    | 项目源码 | 文件源码
def nb_imshow(image, cmap='jet'):
    '''
    Interactive equivalent of imshow for ipython notebook
    '''
    colormap = cm.get_cmap(cmap)  # choose any matplotlib colormap here
    grayp = [mpl.colors.rgb2hex(m) for m in colormap(np.arange(colormap.N))]
    xr = Range1d(start=0, end=image.shape[1])
    yr = Range1d(start=image.shape[0], end=0)
    p = bpl.figure(x_range=xr, y_range=yr)
#    p = bpl.figure(x_range=[0,image.shape[1]], y_range=[0,image.shape[0]])
#    p.image(image=[image], x=0, y=0, dw=image.shape[1], dh=image.shape[0], palette=grayp)
    p.image(image=[image[::-1, :]], x=0, y=image.shape[0],
            dw=image.shape[1], dh=image.shape[0], palette=grayp)

    return p
项目:urbanaccess    作者:UDST    | 项目源码 | 文件源码
def col_colors(df, col, num_bins=5, cmap='spectral',
               start=0.1, stop=0.9):
    """
    Get a list of colors by binning a continuous variable column
    into quantiles

    Parameters
    ----------
    df : pandas.DataFrame
    col : string
        the name of the column in the dataframe with the continuous variable
    num_bins : int
        how many quantiles
    cmap : string
        name of a colormap
    start : float
        where to start in the colorspace
    stop : float
        where to end in the colorspace

    Returns
    -------
    colors : list
    """
    col = df[df[col].notnull()][col]
    bins_used, categories = _recursive_category_gen(col, num_bins)

    if not bins_used == num_bins:
        log('Too many bins requested, using max bins possible. '
            'To avoid duplicate edges, ' + str(bins_used) + ' bins used.')

    color_list = [cm.get_cmap(cmap)(x) for x in np.linspace(start,
                                                            stop,
                                                            bins_used)]
    cleaned_categories = [int(cat) for cat in categories]
    colors = [color_list[cat] for cat in cleaned_categories]
    return colors
项目:osmnx    作者:gboeing    | 项目源码 | 文件源码
def get_colors(n, cmap='viridis', start=0., stop=1., alpha=1., return_hex=False):
    """
    Return n-length list of RGBa colors from the passed colormap name and alpha.

    Parameters
    ----------
    n : int
        number of colors
    cmap : string
        name of a colormap
    start : float
        where to start in the colorspace
    stop : float
        where to end in the colorspace
    alpha : float
        opacity, the alpha channel for the RGBa colors
    return_hex : bool
        if True, convert RGBa colors to a hexadecimal string

    Returns
    -------
    colors : list
    """
    colors = [cm.get_cmap(cmap)(x) for x in np.linspace(start, stop, n)]
    colors = [(r, g, b, alpha) for r, g, b, _ in colors]
    if return_hex:
        colors = rgb_color_list_to_hex(colors)
    return colors
项目:BlueLines    作者:JacksYou    | 项目源码 | 文件源码
def chloropleth(self, query, color = "Blues"):
        """shows a chloropleth map of crimes

        Args: 
            query: name of sql
        """
        self.load()
        data = pd.read_sql_query(con=self.con, sql=query)
        points = self.gen_points(data, self.data_map)
        self.data_map['count'] = self.data_map['poly'].map(lambda x: len(list(filter(prep(x).contains, points))))
        self.data_map['density_m'] = self.data_map['count'] / self.data_map['area_m']
        self.data_map['density_km'] = self.data_map['count'] / self.data_map['area_km']
        self.data_map.replace(to_replace={'density_m': {0: np.nan}, 'density_km': {0: np.nan}}, inplace=True)

        breaks = nb(
            self.data_map[self.data_map['density_km'].notnull()].density_km.values,
            initial=300,
            k=5)

        jb = pd.DataFrame({'jenks_bins': breaks.yb}, index=self.data_map[self.data_map['density_km'].notnull()].index)
        self.data_map = self.data_map.join(jb)
        self.data_map.jenks_bins.fillna(-1, inplace=True)

        jenks_labels = ["<= %0.1f/km$^2$(%s communities)" % (b, c) for b, c in zip(
            breaks.bins, breaks.counts)]
        jenks_labels.insert(0, 'None (%s communities)' % len(self.data_map[self.data_map['density_km'].isnull()]))

        cmap = plt.get_cmap(color)
        self.data_map['patches'] = self.data_map['poly'].map(lambda x: PolygonPatch(x, ec='#555555', lw=.2, alpha=1., zorder=4))
        pc = PatchCollection(self.data_map['patches'], match_original=True)
        norm = Normalize()
        pc.set_facecolor(cmap(norm(self.data_map['jenks_bins'].values)))
        self.ax.add_collection(pc)

        cb = self.gen_colorbar(colors=len(jenks_labels), color_map=cmap, shrink=0.5, labels=jenks_labels)
        cb.ax.tick_params(labelsize=6)

        plt.tight_layout()
        plt.show()
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def make_overlay(image, gt_prob):

    mycm = cm.get_cmap('bwr')

    overimage = mycm(gt_prob, bytes=True)
    output = 0.4*overimage[:,:,0:3] + 0.6*image

    return output
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def make_overlay(image, gt_prob):

    mycm = cm.get_cmap('bwr')

    overimage = mycm(gt_prob, bytes=True)
    output = 0.4*overimage[:,:,0:3] + 0.6*image

    return output
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def make_overlay(image, gt_prob):

    mycm = cm.get_cmap('bwr')

    overimage = mycm(gt_prob, bytes=True)
    output = 0.4*overimage[:,:,0:3] + 0.6*image

    return output
项目:gtfspy    作者:CxAalto    | 项目源码 | 文件源码
def get_colormap_for_boardings(cls, max_n_boardings=None):
        n_default = 5
        if max_n_boardings in [float('nan'), None]:
            max_n_boardings = n_default
        from matplotlib import cm
        cmap = cm.get_cmap("cubehelix_r")
        start = 0.1
        end = 0.9
        if max_n_boardings is 0:
            step = 0
        else:
            divider = max(n_default, max_n_boardings)
            step = (end - start) / divider
        truncated = _truncate_colormap(cmap, start, start + step * max_n_boardings)
        return truncated
项目:Brian2STDPMNIST    作者:zxzhijia    | 项目源码 | 文件源码
def plot_2d_input_weights():
    name = 'XeAe'
    weights = get_2d_input_weights()
    fig = b2.figure(fig_num, figsize = (18, 18))
    im2 = b2.imshow(weights, interpolation = "nearest", vmin = 0, vmax = wmax_ee, cmap = cmap.get_cmap('hot_r'))
    b2.colorbar(im2)
    b2.title('weights of connection' + name)
    fig.canvas.draw()
    return im2, fig
项目:soif    作者:ceyzeriat    | 项目源码 | 文件源码
def colorbar(cmap="jet", cm_min=0, cm_max=1):
    if isinstance(cmap, str):
        cmap = cmget_cmap(cmap)
    norm = matplotlibpyplotNormalize(cm_min, cm_max)
    mappable = cmScalarMappable(cmap=cmap, norm=norm)
    mappable._A = []
    return cmap, norm, mappable
项目:HASY    作者:MartinThoma    | 项目源码 | 文件源码
def _analyze_correlation(csv_filepath):
    """
    Analyze and visualize the correlation of features.

    Parameters
    ----------
    csv_filepath : str
        Path to a CSV file which points to images
    """
    import pandas as pd
    from matplotlib import pyplot as plt
    from matplotlib import cm as cm

    symbol_id2index, labels = generate_index(csv_filepath)
    data, y, s = load_images(csv_filepath,
                             symbol_id2index,
                             one_hot=False,
                             flatten=True)
    df = pd.DataFrame(data=data)

    logging.info("Data loaded. Start correlation calculation. Takes 1.5h.")
    fig = plt.figure()
    ax1 = fig.add_subplot(111)

    # Where we want the ticks, in pixel locations
    ticks = np.linspace(0, 1024, 17)
    # What those pixel locations correspond to in data coordinates.
    # Also set the float format here
    ax1.set_xticks(ticks)
    ax1.set_yticks(ticks)
    labels = ax1.get_xticklabels()
    plt.setp(labels, rotation=30)

    cmap = cm.get_cmap('viridis', 30)
    cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap)
    ax1.grid(True)
    # Add colorbar, make sure to specify tick locations to match desired
    # ticklabels
    fig.colorbar(cax, ticks=[-0.15, 0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1])
    filename = '{}.pdf'.format('feature-correlation')
    plt.savefig(filename)
项目:HASY    作者:MartinThoma    | 项目源码 | 文件源码
def _analyze_correlation(csv_filepath):
    """
    Analyze and visualize the correlation of features.

    Parameters
    ----------
    csv_filepath : str
        Path to a CSV file which points to images
    """
    import pandas as pd
    from matplotlib import pyplot as plt
    from matplotlib import cm as cm

    symbol_id2index, labels = generate_index(csv_filepath)
    data, y, s = load_images(csv_filepath,
                             symbol_id2index,
                             one_hot=False,
                             flatten=True)
    df = pd.DataFrame(data=data)

    logging.info("Data loaded. Start correlation calculation. Takes 1.5h.")
    fig = plt.figure()
    ax1 = fig.add_subplot(111)

    # Where we want the ticks, in pixel locations
    ticks = np.linspace(0, 1024, 17)
    # What those pixel locations correspond to in data coordinates.
    # Also set the float format here
    ax1.set_xticks(ticks)
    ax1.set_yticks(ticks)
    labels = ax1.get_xticklabels()
    plt.setp(labels, rotation=30)

    cmap = cm.get_cmap('viridis', 30)
    cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap)
    ax1.grid(True)
    # Add colorbar, make sure to specify tick locations to match desired
    # ticklabels
    fig.colorbar(cax, ticks=[-0.15, 0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1])
    filename = '{}.pdf'.format('feature-correlation')
    plt.savefig(filename)
项目:crime_prediction    作者:livenb    | 项目源码 | 文件源码
def build_map_nmf(df_map, m, coords, info, title, CrimePatterns):
    # plt.clf()
    fig = plt.figure()
    ax = fig.add_subplot(111, axisbg='w', frame_on=True)

    # draw wards with grey outlines
    norm = Normalize()
    for i in xrange(5):
        color = colormaps[i]
        cmap = plt.get_cmap(color)
        pc = PatchCollection(df_map[df_map['class'] == i+1]['patches'], match_original=True, alpha=0.8)
        pc.set_facecolor(cmap(norm(df_map.loc[(df_map['class'] == i+1), i].values)))
        ax.add_collection(pc)
    pc = PatchCollection(df_map[df_map['class'] == 0]['patches'], match_original=True, alpha=0.2)
    pc.set_facecolor('grey')
    ax.add_collection(pc)
    x, y = m(coords[0] + 0.02, coords[1] + 1.0)
    details = plt.annotate(info, xy=(x, y), size=24, color='#555555')

    # Draw a map scale
    m.drawmapscale(
        coords[0] + 0.2, coords[1] + 0.95,
        coords[0], coords[1],
        20., fontsize=8,
        barstyle='fancy', labelstyle='simple',
        fillcolor1='w', fillcolor2='#555555',
        fontcolor='#555555', units='mi',
        zorder=5)
    legend_patches = []
    for i in range(6):
        legend_patches.append(mpatches.Patch(color=colors[i],
                                             label=CrimePatterns[i]))
    plt.legend(handles=legend_patches, loc='lower right')
    x1, y1 = m(coords[0] + 0.05, 33.62)
    colorinfo = 'Color represent each cluster of community;\nBrightness represent the severities of crime in each community'
    plt.annotate(colorinfo, xy=(x1, y1), size=16, color='#555555')
    plt.tight_layout()
    fig.set_size_inches(12, 13)
    plt.savefig(title, dpi=300, alpha=True)
项目:TonsleyLEDManager    作者:JonnoFTW    | 项目源码 | 文件源码
def __init__(self, dims):
        self.width = dims[0]
        self.height = dims[1]
        import numpy as np
        from matplotlib import cm
        from itertools import cycle
        self.np = np

        color_maps = ['inferno', 'gnuplot', 'magma', 'viridis', 'plasma', 'cubehelix', 'gnuplot2', 'ocean', 'terrain',
                      'CMRmap', 'nipy_spectral']
        maps = [
            np.array(map(lambda i: (np.array(cm.get_cmap(x, 256)(i)[:-1]) * 255).astype(np.uint8), np.arange(0, 256)))
            for x in color_maps]

        # tup = []
        # for m in maps:
        #     tup.extend([m, m[::-1]])
        tup = (
            maps[0], maps[0][::-1], maps[1], maps[1][::-1], maps[2], maps[2][::-1], maps[5], maps[5][::-1], maps[3],
            maps[4][::-1], maps[6], maps[7][::-1], maps[8], maps[9][::-1], maps[10], maps[10][::-1])
        self.cols = np.concatenate(tup)
        self.cols = np.concatenate((self.cols, self.cols[::-1]))
        self.step = 0
        # print("Colors length:", len(self.cols))
        denoms = np.cos(np.arange(0, 3 * np.pi, 0.01)) + (2*np.pi)
        self.denom = cycle(denoms)
        self.up = True
        self.half_len = len(self.cols) / 64.
        # print("Half length", self.half_len)
        self.init_gpu()
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def _n_colors(n, bytes_=False, cmap='hsv'):
    """Produce a list of n unique RGBA color tuples based on a colormap

    Parameters
    ----------
    n : int
        Number of colors.
    bytes : bool
        Return colors as integers values between 0 and 255 (instead of floats
        between 0 and 1).
    cmap : str
        Which colormap to use.

    Returns
    -------
    colors : array, shape (n, 4)
        RGBA color values.
    """
    n_max = 2 ** 10
    if n > n_max:
        raise NotImplementedError("Can't produce more than %i unique "
                                  "colors" % n_max)

    from matplotlib.cm import get_cmap
    cm = get_cmap(cmap, n_max)
    pos = np.linspace(0, 1, n, False)
    colors = cm(pos, bytes=bytes_)
    if bytes_:
        # make sure colors are unique
        for ii, c in enumerate(colors):
            if np.any(np.all(colors[:ii] == c, 1)):
                raise RuntimeError('Could not get %d unique colors from %s '
                                   'colormap. Try using a different colormap.'
                                   % (n, cmap))
    return colors