Python matplotlib.cm 模块,jet() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用matplotlib.cm.jet()

项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def fast_run(args):
    model = Model(args)
    feed = {}
    #feed[model.train_batch]=False
    xx,ss,yy=model.inputs(args.input_path)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    tf.train.start_queue_runners(sess=sess)
    xxx,sss,yyy=sess.run([xx,ss,yy])
    #print(yyy)
    #print(yyy[1])
    print('len:',xxx.shape)
    import matplotlib.cm as cm
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    plt.figure(figsize=(16,4))
    #plt.imshow()
    plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
    plt.savefig("img.jpg")
    plt.clf() ; plt.cla()
项目:cebl    作者:idfah    | 项目源码 | 文件源码
def plot(self, n=200, rng=(-3.0,3.0, -4.0,8.0)):
        x = np.linspace(rng[0], rng[1], n)
        y = np.linspace(rng[2], rng[3], n)

        xx, yy = np.meshgrid(x, y)

        points = np.vstack((xx.ravel(), yy.ravel())).T
        values = self.eval(points)
        zz = values.reshape((xx.shape[0], yy.shape[1]))

        fig = plt.figure(figsize=(12,6))
        axSurf = fig.add_subplot(1,2,1, projection='3d')

        surf = axSurf.plot_surface(xx, yy, zz, linewidth=1.0, cmap=pltcm.jet)
        surf.set_edgecolor('black')

        axCont = fig.add_subplot(1,2,2)
        axCont.contour(x, y, zz, 40, color='black')
        axCont.scatter(self.a, self.a**2, color='black', marker='o', s=400, linewidth=3)
        axCont.scatter(*self.solution, color='red', marker='x', s=400, linewidth=3)

        paramTrace = np.array(self.trainResult['pTrace'])
        axCont.plot(paramTrace[:,0], paramTrace[:,1], color='red', linewidth=2)

        fig.tight_layout()
项目:cebl    作者:idfah    | 项目源码 | 文件源码
def plot(self, n=500, rng=(-5.0,5.0, -5.0,5.0)):
        x = np.linspace(rng[0], rng[1], n)
        y = np.linspace(rng[2], rng[3], n)

        xx, yy = np.meshgrid(x, y)

        points = np.vstack((xx.ravel(), yy.ravel())).T
        values = self.eval(points)
        zz = values.reshape((xx.shape[0], yy.shape[1]))

        fig = plt.figure()
        axSurf = fig.add_subplot(1,2,1, projection='3d')

        surf = axSurf.plot_surface(xx, yy, zz, linewidth=1.0, cmap=pltcm.jet)
        surf.set_edgecolor('black')

        axCont = fig.add_subplot(1,2,2)
        axCont.contour(x, y, zz, 40, color='black')
        axCont.scatter(0.0, 0.0, color='black', marker='o', s=400, linewidth=3)
        axCont.scatter(*self.solution, color='red', marker='x', s=400, linewidth=3)

        paramTrace = np.array(self.trainResult['pTrace'])
        axCont.plot(paramTrace[:,0], paramTrace[:,1], color='red', linewidth=2)
项目:adversarial-variational-bayes    作者:gdikov    | 项目源码 | 文件源码
def _cmap_discretize(cmap, N):
    """Return a discrete colormap from the continuous colormap cmap.

        cmap: colormap instance, eg. cm.jet.
        N: number of colors.

    Example
        x = resize(arange(100), (5,100))
        djet = cmap_discretize(cm.jet, 5)
        imshow(x, cmap=djet)
    """

    if type(cmap) == str:
        cmap = plt.get_cmap(cmap)
    colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
    colors_rgba = cmap(colors_i)
    indices = np.linspace(0, 1., N+1)
    cdict = {}
    for ki, key in enumerate(('red','green','blue')):
        cdict[key] = [(indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
                      for i in range(N+1)]
    # Return colormap object.
    return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotValueFunction(self, valueFunction, prefix):
        '''3d plot of a value function.'''
        fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
        X, Y = np.meshgrid(np.arange(self.numCols), np.arange(self.numRows))
        Z = valueFunction.reshape(self.numRows, self.numCols)

        for i in xrange(len(X)):
            for j in xrange(len(X[i])/2):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

        ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
            cmap = plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(self.outputPath + prefix + 'value_function.png')
        plt.close()
项目:PyFrac    作者:GeoEnergyLab-EPFL    | 项目源码 | 文件源码
def PrintDomain(Matrix, mesh, Elem = None):
    """
    3D plot of all elements given in the form of a list;
    Arguments:
        Elem(ndarray-int):          list of elements to be plotted
        Matrix(ndarray-float):      values to be plotted, should be equal in size to the first argument(Elem)
        mesh(CartesianMesh object): mesh object
    """
    if Elem == None:
        Elem = np.arange(mesh.NumberOfElts)

    # if len(Matrix.shape)==1:
    #     Matrix = np.reshape(Matrix, (mesh.ny, mesh.nx))

    tmp = np.zeros((mesh.NumberOfElts,))
    tmp[Elem] = Matrix
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.plot_trisurf(mesh.CenterCoor[:, 0], mesh.CenterCoor[:, 1], tmp, cmap=cm.jet, linewidth=0.2)
    plt.show()
    plt.pause(0.01)


# ----------------------------------------------------------------------------------------------------------------------
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_kde_colors(self):
        tm._skip_if_no_scipy()
        _skip_if_no_scipy_gaussian_kde()

        from matplotlib import cm

        custom_colors = 'rgcby'
        df = DataFrame(rand(5, 5))

        ax = df.plot.kde(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)
        tm.close()

        ax = df.plot.kde(colormap='jet')
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
        tm.close()

        ax = df.plot.kde(colormap=cm.jet)
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
项目:QuantEcon.lectures.code    作者:QuantEcon    | 项目源码 | 文件源码
def plot4():
    # Density 1
    Z = gen_gaussian_plot_vals(x_hat, ?)
    cs1 = ax.contour(X, Y, Z, 6, colors="black")
    ax.clabel(cs1, inline=1, fontsize=10)
    # Density 2
    M = ? * G.T * linalg.inv(G * ? * G.T + R)
    x_hat_F = x_hat + M * (y - G * x_hat)
    ?_F = ? - M * G * ?
    Z_F = gen_gaussian_plot_vals(x_hat_F, ?_F)
    cs2 = ax.contour(X, Y, Z_F, 6, colors="black")
    ax.clabel(cs2, inline=1, fontsize=10)
    # Density 3
    new_x_hat = A * x_hat_F
    new_? = A * ?_F * A.T + Q
    new_Z = gen_gaussian_plot_vals(new_x_hat, new_?)
    cs3 = ax.contour(X, Y, new_Z, 6, colors="black")
    ax.clabel(cs3, inline=1, fontsize=10)
    ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
    ax.text(float(y[0]), float(y[1]), r"$y$", fontsize=20, color="black")

# == Choose a plot to generate == #
项目:crime_prediction    作者:livenb    | 项目源码 | 文件源码
def cmap_discretize(cmap, N):
    """
    Return a discrete colormap from the continuous colormap cmap.

        cmap: colormap instance, eg. cm.jet.
        N: number of colors.

    Example
        x = resize(arange(100), (5,100))
        djet = cmap_discretize(cm.jet, 5)
        imshow(x, cmap=djet)

    """
    if type(cmap) == str:
        cmap = get_cmap(cmap)
    colors_i = np.concatenate((np.linspace(0, 1., N), (0., 0., 0., 0.)))
    colors_rgba = cmap(colors_i)
    indices = np.linspace(0, 1., N + 1)
    cdict = {}
    for ki, key in enumerate(('red', 'green', 'blue')):
        cdict[key] = [(indices[i], colors_rgba[i - 1, ki], colors_rgba[i, ki]) for i in xrange(N + 1)]
    return LinearSegmentedColormap(cmap.name + "_%d" % N, cdict, 1024)
项目:sv_and_isoforms_from_RNAseq    作者:NCBI-Hackathons    | 项目源码 | 文件源码
def single_hgram(hgram, title=None, fname='sample.pdf', show=False,
                 link=None):
  """ Show """
  import matplotlib.cm as cm
  plt.figure(dpi=150, figsize=(6,2))
  xs = list(range(len(hgram)))
  colors = [cm.jet(float(i)/max(hgram)) for i in hgram]
  for h in range(len(hgram)):
    b = plt.bar(xs[h], hgram[h], width=1., color=colors[h], 
                edgecolor=colors[h]) #alpha=colors[h],
    # b.set_urls(['http://www.ytmnd.com'])

  # Aesthetics 
  if title is not None:
    if link is not None:
      pass # Add a link here? 
    else:
      plt.title(title)
  plt.xlabel('Base')
  plt.ylabel('Relative coverage')
  if fname is not None:
    plt.savefig(fname)
  if show:
    plt.show()
  return
项目:sv_and_isoforms_from_RNAseq    作者:NCBI-Hackathons    | 项目源码 | 文件源码
def multi_hgram(hgrams, title=None, fname=None, show=False,
                link=None):
  """ """
  import matplotlib.cm as cm
  plt.figure(dpi=150, figsize=(6,2))
  xs = list(range(max([len(h) for h in hgrams])))
  maxmax = max([max(hg) for hg in hgrams])
  # Color each line thing
  for hgram in hgrams:
    colors = [cm.jet(float(i)/maxmax) for i in hgram]
    for h in range(len(hgram)):
      plt.scatter(xs[h], hgram[h], marker='o', color=colors[h], s=2)
              #edgecolor='none') #alpha=colors[h], 
    plt.plot(xs[:len(hgram)], hgram, linewidth=1., color='k', alpha=0.4)
  if title is not None:
    plt.title(title)
  plt.xlabel('Base')
  plt.ylabel('Relative coverage')
  if fname is not None:
    plt.savefig(fname)
  if show:
    plt.show()
  return
项目:psst    作者:power-system-simulation-toolbox    | 项目源码 | 文件源码
def plot_stacked_power_generation(results, ax=None, kind='bar', legend=False):
    if ax is None:
        fig, axs = plt.subplots(1, 1, figsize=(16, 10))
        ax = axs

    df = results.power_generated
    cols = (df - results.unit_commitment*results.maximum_power_output).std().sort_values().index
    df = df[[c for c in cols]]

    df.plot(kind=kind, stacked=True, ax=ax, colormap=cm.jet, alpha=0.5, legend=legend)

    df = results.unit_commitment * results.maximum_power_output

    df = df[[c for c in cols]]

    df.plot.area(stacked=True, ax=ax, alpha=0.125/2,  colormap=cm.jet, legend=None)

    ax.set_ylabel('Dispatch and Committed Capacity (MW)')
    ax.set_xlabel('Time (h)')
    return ax
项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def run_sample(args):
        model = Model(args)
        y_, x, s, y = model.sample()
        print('correct text:',y)
        print('prediction  :',y_)
        print('len:',s)
        print('batch shape:',x.shape)
        import matplotlib.cm as cm
        import matplotlib as mpl
        mpl.use('Agg')
        import matplotlib.pyplot as plt
        plt.figure(figsize=(16,4))
        plt.imshow(np.asarray(x[0]).reshape((36,90))[:s[0]]+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
        plt.savefig("img.jpg")
        plt.clf() ; plt.cla()
        print("image saved:img.jpg")
项目:cebl    作者:idfah    | 项目源码 | 文件源码
def demoPSO():
    rosen = tests.Rosen(optimFunc=pso, nParticles=10, accuracy=0.01,
                maxIter=5000, verbose=True)#, initialSolution=(2.5, -2.5))

    n = 200
    rng=(-3.0,3.0, -4.0,8.0)

    x = np.linspace(rng[0], rng[1], n)
    y = np.linspace(rng[2], rng[3], n)

    xx, yy = np.meshgrid(x, y)

    points = np.vstack((xx.ravel(), yy.ravel())).T
    values = rosen.eval(points)
    zz = values.reshape((xx.shape[0], yy.shape[1]))

    fig = plt.figure(figsize=(12,6))
    axSurf = fig.add_subplot(1,2,1, projection='3d')

    surf = axSurf.plot_surface(xx, yy, zz, linewidth=1.0, cmap=pltcm.jet)
    surf.set_edgecolor('black')

    axCont = fig.add_subplot(1,2,2)
    axCont.contour(x, y, zz, 40, color='black')
    axCont.scatter(rosen.a, rosen.a**2, color='black', marker='o', s=400, linewidth=3)
    axCont.scatter(*rosen.solution, color='red', marker='x', s=400, linewidth=3)

    paramTrace = np.array(rosen.trainResult['pTrace'])
    for i in xrange(paramTrace.shape[1]):
        axCont.plot(paramTrace[:,i:,0], paramTrace[:,i:,1], color=plt.cm.jet(i/float(paramTrace.shape[1])), linewidth=1)

    fig.tight_layout()
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def plotTrajectory(data):
  #    points = np.array([x, y]).T.reshape(-1, 1, 2)
  #    segments = np.concatenate([points[:-1], points[1:]], axis=1)
  #
  #    lc = LineCollection(segments, cmap=plt.get_cmap('Spectral'))
  #    lc.set_array(z)
  #    #lc.set_linewidth(2)
  #
  #    plt.gca().add_collection(lc)

  import matplotlib.cm as cm
  cmap = cm.jet;
  c = np.linspace(0, 10, len(data[:,0]));
  plt.scatter(data[:,0], data[:,1], c = c, cmap = cmap, marker = '+');
项目:pysptools    作者:ctherien    | 项目源码 | 文件源码
def display(self, img, n_classes, labels=None, mask=None, interpolation='none', colorMap='jet', firstBlack=False, suffix=''):
        """
        Display a classification map using matplotlib.

        Parameters:
            img: `numpy array`
                A classified map, (m x n x 1),
                the classes start at 0.

            n_classes: `int`
                The number of classes found in img.

            labels: `list of string [default None]`
                The legend labels.

            mask: `numpy array [default None]`
                A binary mask, when *True* the corresponding pixel is displayed.

            interpolation: `string [default none]`
              A matplotlib interpolation method.

            colorMap: `string [default 'Accent']`
              A color map element of
              ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3'],
              "Accent" is the default and it fall back on "Jet".

            firstBlack: `bool [default False]`
                Display the first legend element in black if *True*. If it is the case,
                the corresponding classification class value is zero and it can be use when the
                meaning is nothing to classify (example: a background).

            suffix: `string [default None]`
              Add a suffix to the file name.
        """
        self.plot(img, n_classes, labels=labels, mask=mask, interpolation=interpolation, colorMap=colorMap, firstBlack=firstBlack, suffix=suffix)
项目:pysptools    作者:ctherien    | 项目源码 | 文件源码
def plot1(self, img, path=None, mask=None, interpolation='none', colorMap='jet', suffix=''):
        import matplotlib.pyplot as plt
        if path != None:
            plt.ioff()

        if isinstance(mask, np.ndarray):
            img = img[:,:] * mask

        plt.imshow(img, interpolation=interpolation)
        plt.set_cmap(colorMap)
        cbar = plt.colorbar()
        cbar.set_ticks([])
        if path != None:
            if suffix == None:
                fout = osp.join(path, '{0}.png'.format(self.label))
            else:
                fout = osp.join(path, '{0}_{1}.png'.format(self.label, suffix))
            try:
                plt.savefig(fout)
            except IOError:
                raise IOError('in classifiers.output, no such file or directory: {0}'.format(path))
        else:
            if suffix == None:
                plt.title('{0}'.format(self.label))
            else:
                plt.title('{0} - {1}'.format(self.label, suffix))
            plt.show()

        plt.close()
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotBasisFunctions(self, eigenvalues, eigenvectors):
        '''3d plot of the basis function. Right now I am plotting eigenvectors,
           so each coordinate of the eigenvector correspond to the value to be
           plotted for the correspondent state.''' 
        for i in xrange(len(eigenvalues)):  
            fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
            X, Y = np.meshgrid(np.arange(self.numRows), np.arange(self.numCols))
            Z = eigenvectors[:,i].reshape(self.numCols, self.numRows)

            for ii in xrange(len(X)):
                for j in xrange(len(X[ii])/2):
                    tmp = X[ii][j]
                    X[ii][j] = X[ii][len(X[ii]) - j - 1]
                    X[ii][len(X[ii]) - j - 1] = tmp

            my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

            ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
                cmap = plt.get_cmap('jet'))
            plt.gca().view_init(elev=30, azim=30)
            plt.savefig(self.outputPath + str(i) + '_eig' + '.png')
            plt.close()


        plt.plot(eigenvalues, 'o')
        plt.savefig(self.outputPath + 'eigenvalues.png')
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_radviz(self):
        from pandas.tools.plotting import radviz
        from matplotlib import cm

        df = self.iris
        _check_plot_works(radviz, frame=df, class_column='Name')

        rgba = ('#556270', '#4ECDC4', '#C7F464')
        ax = _check_plot_works(
            radviz, frame=df, class_column='Name', color=rgba)
        # skip Circle drawn as ticks
        patches = [p for p in ax.patches[:20] if p.get_label() != '']
        self._check_colors(
            patches[:10], facecolors=rgba, mapping=df['Name'][:10])

        cnames = ['dodgerblue', 'aquamarine', 'seagreen']
        _check_plot_works(radviz, frame=df, class_column='Name', color=cnames)
        patches = [p for p in ax.patches[:20] if p.get_label() != '']
        self._check_colors(patches, facecolors=cnames, mapping=df['Name'][:10])

        _check_plot_works(radviz, frame=df,
                          class_column='Name', colormap=cm.jet)
        cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
        patches = [p for p in ax.patches[:20] if p.get_label() != '']
        self._check_colors(patches, facecolors=cmaps, mapping=df['Name'][:10])

        colors = [[0., 0., 1., 1.],
                  [0., 0.5, 1., 1.],
                  [1., 0., 0., 1.]]
        df = DataFrame({"A": [1, 2, 3],
                        "B": [2, 1, 3],
                        "C": [3, 2, 1],
                        "Name": ['b', 'g', 'r']})
        ax = radviz(df, 'Name', color=colors)
        handles, labels = ax.get_legend_handles_labels()
        self._check_colors(handles, facecolors=colors)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_bar_colors(self):
        import matplotlib.pyplot as plt
        default_colors = self._maybe_unpack_cycler(plt.rcParams)

        df = DataFrame(randn(5, 5))
        ax = df.plot.bar()
        self._check_colors(ax.patches[::5], facecolors=default_colors[:5])
        tm.close()

        custom_colors = 'rgcby'
        ax = df.plot.bar(color=custom_colors)
        self._check_colors(ax.patches[::5], facecolors=custom_colors)
        tm.close()

        from matplotlib import cm
        # Test str -> colormap functionality
        ax = df.plot.bar(colormap='jet')
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
        self._check_colors(ax.patches[::5], facecolors=rgba_colors)
        tm.close()

        # Test colormap functionality
        ax = df.plot.bar(colormap=cm.jet)
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
        self._check_colors(ax.patches[::5], facecolors=rgba_colors)
        tm.close()

        ax = df.ix[:, [0]].plot.bar(color='DodgerBlue')
        self._check_colors([ax.patches[0]], facecolors=['DodgerBlue'])
        tm.close()

        ax = df.plot(kind='bar', color='green')
        self._check_colors(ax.patches[::5], facecolors=['green'] * 5)
        tm.close()
项目:forward    作者:yajun0601    | 项目源码 | 文件源码
def draw_mandelbrot(cx, cy, d):
    """
    ???(cx, cy)????d????Mandelbrot
    """
    x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d 
    y, x = np.ogrid[y0:y1:200j, x0:x1:200j]
    c = x + y*1j
    start = time.clock()
    mandelbrot = np.frompyfunc(iter_point,1,1)(c).astype(np.float)
    print("time=",time.clock() - start)
    pl.imshow(mandelbrot, cmap=cm.jet, extent=[x0,x1,y0,y1])
    #pl.gca().set_axis_off()
项目:QuantEcon.lectures.code    作者:QuantEcon    | 项目源码 | 文件源码
def plot1():
    Z = gen_gaussian_plot_vals(x_hat, ?)
    ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
    cs = ax.contour(X, Y, Z, 6, colors="black")
    ax.clabel(cs, inline=1, fontsize=10)
项目:QuantEcon.lectures.code    作者:QuantEcon    | 项目源码 | 文件源码
def plot2():
    Z = gen_gaussian_plot_vals(x_hat, ?)
    ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
    cs = ax.contour(X, Y, Z, 6, colors="black")
    ax.clabel(cs, inline=1, fontsize=10)
    ax.text(float(y[0]), float(y[1]), r"$y$", fontsize=20, color="black")
项目:QuantEcon.lectures.code    作者:QuantEcon    | 项目源码 | 文件源码
def plot3():
    Z = gen_gaussian_plot_vals(x_hat, ?)
    cs1 = ax.contour(X, Y, Z, 6, colors="black")
    ax.clabel(cs1, inline=1, fontsize=10)
    M = ? * G.T * linalg.inv(G * ? * G.T + R)
    x_hat_F = x_hat + M * (y - G * x_hat)
    ?_F = ? - M * G * ?
    new_Z = gen_gaussian_plot_vals(x_hat_F, ?_F)
    cs2 = ax.contour(X, Y, new_Z, 6, colors="black")
    ax.clabel(cs2, inline=1, fontsize=10)
    ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
    ax.text(float(y[0]), float(y[1]), r"$y$", fontsize=20, color="black")
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def plot_segmentation(I,GT,Seg, fig=None):

    I = np.squeeze(I)
    GT = np.squeeze(GT)
    Seg = np.squeeze(Seg)

    GTC = np.logical_and(GT, np.logical_not(ndimage.binary_erosion(GT)))
    SegC = np.logical_and(Seg, np.logical_not(ndimage.binary_erosion(Seg)))

    plt.figure(fig)
    maskedGT = np.ma.masked_where(GTC == 0, GTC)
    maskedSeg = np.ma.masked_where(SegC == 0, SegC)
    plt.imshow(I, cmap=cm.gray)
    plt.imshow(maskedGT, cmap=cm.jet, interpolation='none')
    plt.imshow(maskedSeg*100, cmap=cm.hsv, interpolation='none')
项目:Neural-Network-for-Classification    作者:eugenelet    | 项目源码 | 文件源码
def plot_decision_boundary_non_block(weight, input, z, layer_num, neuron_num, activ_type):
    x = np.ravel(input[:,0])
    y = np.ravel(input[:,1])
    fig1 = plt.figure(1)
    # plt.hold(True)

    # weight = np.column_stack((np.column_stack((weight[0:3],weight[3:6])),weight[6:9]))
    x_s=np.arange(np.amin(x), np.amax(x), 0.1)                # generate a mesh
    y_s=np.arange(np.amin(y), np.amax(y), 0.1)


    x_surf, y_surf = np.meshgrid(x_s, y_s)

    xy=np.vstack((x_surf.flatten(),y_surf.flatten())).T
    # xy = np.column_stack((np.ones(np.shape(xy)[0]), xy))

    logit = test_neural(weight, xy, layer_num, neuron_num, activ_type) #xy.dot(weight) # N x K
    boundary = np.zeros(xy.shape[0]) # N
    for i in range(xy.shape[0]):
        boundary[i] = np.argmax(logit[i]) 

    z_surf = np.zeros(np.shape(xy)[0])
    z_surf[np.where(boundary==0)] = 1
    z_surf[np.where(boundary==1)] = 2
    z_surf[np.where(boundary==2)] = 3
    z_surf = z_surf.reshape(x_surf.shape)

    plt.contourf(x_surf,y_surf,z_surf, 8, alpha=.75, cmap='jet')
    plt.scatter(x, y, s=20,c=z, marker = 'o', cmap = cm.jet );                        # plot a 3d scatter plot

    plt.draw()
    plt.pause(0.001)
    return boundary
项目:Neural-Network-for-Classification    作者:eugenelet    | 项目源码 | 文件源码
def plot_decision_boundary(weight, input, z, layer_num, neuron_num, activ_type):
    x = np.ravel(input[:,0])
    y = np.ravel(input[:,1])
    fig1 = plt.figure(1)
    plt.hold(True)

    x_s=np.arange(np.amin(x), np.amax(x), 0.01)                # generate a mesh
    y_s=np.arange(np.amin(y), np.amax(y), 0.01)


    x_surf, y_surf = np.meshgrid(x_s, y_s)

    xy=np.vstack((x_surf.flatten(),y_surf.flatten())).T

    logit = test_neural(weight, xy, layer_num, neuron_num, activ_type) #xy.dot(weight) # N x K
    boundary = np.zeros(xy.shape[0]) # N
    for i in range(xy.shape[0]):
        boundary[i] = np.argmax(logit[i]) 

    z_surf = np.zeros(np.shape(xy)[0])
    z_surf[np.where(boundary==0)] = 1
    z_surf[np.where(boundary==1)] = 2
    z_surf[np.where(boundary==2)] = 3
    z_surf = z_surf.reshape(x_surf.shape)

    plt.contourf(x_surf,y_surf,z_surf, 8, alpha=.75, cmap='jet')
    plt.scatter(x, y, s=20,c=z, marker = 'o', cmap = cm.jet );                        # plot a 3d scatter plot


    plt.show()
    return boundary
项目:python-machine-learning-book    作者:jeremyn    | 项目源码 | 文件源码
def plot_silhouettes(X, y):
    cluster_labels = np.unique(y)
    n_clusters = cluster_labels.shape[0]
    silhouette_vals = silhouette_samples(X, y, metric='euclidean')
    y_ax_lower = 0
    y_ax_upper = 0
    yticks = []
    for i, c in enumerate(cluster_labels):
        c_silhouette_vals = silhouette_vals[y == c]
        c_silhouette_vals.sort()
        y_ax_upper += len(c_silhouette_vals)
        color = cm.jet(i / n_clusters)
        plt.barh(
            range(y_ax_lower, y_ax_upper),
            c_silhouette_vals,
            height=1.0,
            edgecolor='none',
            color=color,
        )
        yticks.append((y_ax_lower + y_ax_upper) / 2)
        y_ax_lower += len(c_silhouette_vals)

    silhouette_avg = np.mean(silhouette_vals)
    plt.axvline(silhouette_avg, color='red', linestyle='--')

    plt.yticks(yticks, cluster_labels + 1)
    plt.ylabel('Cluster')
    plt.xlabel('Silhouette coefficient')

    plt.show()
项目:infopanel    作者:partofthething    | 项目源码 | 文件源码
def __init__(self, max_x, max_y, data_source=None):
        Duration.__init__(self, max_x, max_y, data_source)
        self.cmap = cm.jet  # pylint: disable=no-member
        self.label_fmt = '{}'  # until voluptuous bug fix is released
        self.val_fmt = '{:> .1f}'
项目:dlcv05    作者:telecombcn-dl    | 项目源码 | 文件源码
def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None):
    """Wrapper around pl.imshow"""
    if cmap is None:
        cmap = cm.jet
    if vmin is None:
        vmin = data.min()
    if vmax is None:
        vmax = data.max()
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap)
    pl.colorbar(im, cax=cax)
项目:deep-learning-experiments    作者:raghakot    | 项目源码 | 文件源码
def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None):
    """Wrapper around pl.imshow"""
    if cmap is None:
        cmap = cm.jet
    if vmin is None:
        vmin = data.min()
    if vmax is None:
        vmax = data.max()
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap)
    pl.colorbar(im, cax=cax)
项目:tredparse    作者:humanlongevity    | 项目源码 | 文件源码
def set_image_options(self, args=None, figsize="6x6", dpi=300,
                          format="pdf", font="Helvetica", palette="deep",
                          style="darkgrid", cmap="jet"):
        """
        Add image format options for given command line programs.
        """
        allowed_format = ("emf", "eps", "pdf", "png", "ps", \
                          "raw", "rgba", "svg", "svgz")
        allowed_fonts = ("Helvetica", "Palatino", "Schoolbook", "Arial")
        allowed_styles = ("darkgrid", "whitegrid", "dark", "white", "ticks")
        allowed_diverge = ("BrBG", "PiYG", "PRGn", "PuOr", "RdBu", \
                           "RdGy", "RdYlBu", "RdYlGn", "Spectral")

        group = OptionGroup(self, "Image options")
        self.add_option_group(group)

        group.add_option("--figsize", default=figsize,
                help="Figure size `width`x`height` in inches [default: %default]")
        group.add_option("--dpi", default=dpi, type="int",
                help="Physical dot density (dots per inch) [default: %default]")
        group.add_option("--format", default=format, choices=allowed_format,
                help="Generate image of format [default: %default]")
        group.add_option("--font", default=font, choices=allowed_fonts,
                help="Font name")
        group.add_option("--style", default=style, choices=allowed_styles,
                help="Axes background")
        group.add_option("--diverge", default="PiYG", choices=allowed_diverge,
                help="Contrasting color scheme")
        group.add_option("--cmap", default=cmap, help="Use this color map")

        if args is None:
            args = sys.argv[1:]

        opts, args = self.parse_args(args)

        assert opts.dpi > 0
        assert "x" in opts.figsize

        setup_theme(style=opts.style, font=opts.font)

        return opts, args, ImageOptions(opts)
项目:ML-note    作者:JasonK93    | 项目源码 | 文件源码
def test_ElasticNet_alpha_rho(*data):
    '''
    test score with different alpha and l1_ratio
    :param data: train_data, test_data, train_value, test_value
    :return: None
    '''
    X_train,X_test,y_train,y_test=data
    alphas=np.logspace(-2,2)
    rhos=np.linspace(0.01,1)
    scores=[]
    for alpha in alphas:
            for rho in rhos:
                regr = linear_model.ElasticNet(alpha=alpha,l1_ratio=rho)
                regr.fit(X_train, y_train)
                scores.append(regr.score(X_test, y_test))
    ## graph
    alphas, rhos = np.meshgrid(alphas, rhos)
    scores=np.array(scores).reshape(alphas.shape)
    from mpl_toolkits.mplot3d import Axes3D # this part works well in py3
    from matplotlib import cm
    fig=plt.figure()
    ax=Axes3D(fig)
    surf = ax.plot_surface(alphas, rhos, scores, rstride=1, cstride=1, cmap=cm.jet,
        linewidth=0, antialiased=False)
    fig.colorbar(surf, shrink=0.5, aspect=5)
    ax.set_xlabel(r"$\alpha$")
    ax.set_ylabel(r"$\rho$")
    ax.set_zlabel("score")
    ax.set_title("ElasticNet")
    plt.show()
项目:spatial-reasoning    作者:JannerM    | 项目源码 | 文件源码
def vis_value_map(pred, targ, save_path, title='prediction', share=True):
    # print 'in vis: ', pred.shape, targ.shape
    dim = int(math.sqrt(pred.size))
    if share:
        vmin = min(pred.min(), targ.min())
        vmax = max(pred.max(), targ.max())
    else:
        vmin = None
        vmax = None

    plt.clf()
    fig, (ax0,ax1) = plt.subplots(1,2,sharey=True)
    heat0 = ax0.pcolor(pred.reshape(dim,dim), vmin=vmin, vmax=vmax, cmap=cm.jet)
    ax0.set_title(title, fontsize=5)
    if not share:
        fig.colorbar(heat0)
    heat1 = ax1.pcolor(targ.reshape(dim,dim), vmin=vmin, vmax=vmax, cmap=cm.jet)
    ax1.invert_yaxis()
    ax1.set_title('target')

    fig.subplots_adjust(right=0.8)
    cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
    fig.colorbar(heat1, cax=cbar_ax)

    # print 'saving to: ', fullpath
    plt.savefig(save_path, bbox_inches='tight')
    plt.close(fig)

    # print pred.shape, targ.shape
项目:spatial-reasoning    作者:JannerM    | 项目源码 | 文件源码
def vis_fig(data, save_path, title=None, vmax=None, vmin=None, cmap=cm.jet):
    # print 'in vis: ', pred.shape, targ.shape
    dim = int(math.sqrt(data.size))

    # if share:
    #     vmin = min(pred.min(), targ.min())
    #     vmax = max(pred.max(), targ.max())
    # else:
    #     vmin = None
    #     vmax = None

    plt.clf()
    # fig, (ax0,ax1) = plt.subplots(1,2,sharey=True)
    plt.pcolor(data.reshape(dim,dim), vmin=vmin, vmax=vmax, cmap=cmap)
    plt.xticks([])
    plt.yticks([])
    # ax0.set_title(title, fontsize=5)
    # if not share:
        # fig.colorbar(heat0)
    # heat1 = ax1.pcolor(targ.reshape(dim,dim), vmin=vmin, vmax=vmax, cmap=cm.jet)
    fig = plt.gcf()
    ax = plt.gca()

    if title:
        ax.set_title(title)
    ax.invert_yaxis()

    fig.set_size_inches(4,4)

    # ax1.invert_yaxis()
    # ax1.set_title('target')

    # fig.subplots_adjust(right=0.8)
    # cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
    # fig.colorbar(heat1, cax=cbar_ax)

    # print 'saving to: ', fullpath
    plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0)
    plt.close(fig)

    # print pred.shape, targ.shape
项目:devito    作者:opesci    | 项目源码 | 文件源码
def plot_perturbation(model, model1, colorbar=True):
    """
    Plot a two-dimensional velocity difference from two seismic :class:`Model`
    objects.

    :param model: :class:`Model` object of first velocity model.
    :param model1: :class:`Model` object of the second velocity model.
    :param source: Coordinates of the source point.
    :param receiver: Coordinates of the receiver points.
    """
    domain_size = 1.e-3 * np.array(model.domain_size)
    extent = [model.origin[0], model.origin[0] + domain_size[0],
              model.origin[1] + domain_size[1], model.origin[1]]
    dv = np.transpose(model.vp) - np.transpose(model1.vp)

    plot = plt.imshow(dv, animated=True, cmap=cm.jet,
                      vmin=min(dv.reshape(-1)), vmax=max(dv.reshape(-1)),
                      extent=extent)
    plt.xlabel('X position (km)')
    plt.ylabel('Depth (km)')

    # Create aligned colorbar on the right
    if colorbar:
        ax = plt.gca()
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        cbar = plt.colorbar(plot, cax=cax)
        cbar.set_label('Velocity perturbation (km/s)')
    plt.show()
项目:devito    作者:opesci    | 项目源码 | 文件源码
def plot_velocity(model, source=None, receiver=None, colorbar=True):
    """
    Plot a two-dimensional velocity field from a seismic :class:`Model`
    object. Optionally also includes point markers for sources and receivers.

    :param model: :class:`Model` object that holds the velocity model.
    :param source: Coordinates of the source point.
    :param receiver: Coordinates of the receiver points.
    """
    domain_size = 1.e-3 * np.array(model.domain_size)
    extent = [model.origin[0], model.origin[0] + domain_size[0],
              model.origin[1] + domain_size[1], model.origin[1]]

    plot = plt.imshow(np.transpose(model.vp), animated=True, cmap=cm.jet,
                      vmin=np.min(model.vp), vmax=np.max(model.vp), extent=extent)
    plt.xlabel('X position (km)')
    plt.ylabel('Depth (km)')

    # Plot source points, if provided
    if receiver is not None:
        plt.scatter(1e-3*receiver[:, 0], 1e-3*receiver[:, 1],
                    s=25, c='green', marker='D')

    # Plot receiver points, if provided
    if source is not None:
        plt.scatter(1e-3*source[:, 0], 1e-3*source[:, 1],
                    s=25, c='red', marker='o')

    # Ensure axis limits
    plt.xlim(model.origin[0], model.origin[0] + domain_size[0])
    plt.ylim(model.origin[1] + domain_size[1], model.origin[1])

    # Create aligned colorbar on the right
    if colorbar:
        ax = plt.gca()
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        cbar = plt.colorbar(plot, cax=cax)
        cbar.set_label('Velocity (km/s)')
    plt.show()
项目:psst    作者:power-system-simulation-toolbox    | 项目源码 | 文件源码
def plot_costs(case, number_of_segments=1, ax=None, legend=True):
    if ax is None:
        fig, axs = plt.subplots(1, 1, figsize=(16, 10))
        ax = axs

    color_scale = make_interpolater(0, len(case.gen_name), 0, 1)

    color = {g: plt.cm.jet(color_scale(i)) for i, g in enumerate(case.gen_name)}

    for s in calculate_segments(case, number_of_segments=number_of_segments):
        pmin, pmax = s['segment']
        x = np.linspace(pmin, pmax)
        y = x * s['slope']
        ax.plot(x, y, color=color[s['name']])

    ax = ax.twinx()
    for s in calculate_segments(case, number_of_segments=number_of_segments):
        pmin, pmax = s['segment']
        x = np.linspace(pmin, pmax)
        y = [s['slope'] for _ in x]
        ax.plot(x, y, color=color[s['name']])

    ax.set_ylim(0, 1.2*y[-1])

    if legend:
        lines = list()
        for g in case.gen_name:
            lines.append(mlines.Line2D([], [], color=color[g], label=g))
            ax.legend(handles=lines, loc='upper left')

    return ax
项目:PR-lecture---2017    作者:cgh0430haha    | 项目源码 | 文件源码
def visualize_saliency(model, layer_idx, filter_indices,
                       seed_img, alpha=0.5):
    """Generates an attention heatmap over the `seed_img` for maximizing `filter_indices` output in the given `layer`.
     For a full description of saliency, see the paper:
     [Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps](https://arxiv.org/pdf/1312.6034v2.pdf)

    Args:
        model: The `keras.models.Model` instance. Model input is expected to be a 4D image input of shape:
            `(samples, channels, rows, cols)` if data_format='channels_first' or `(samples, rows, cols, channels)` if data_format='channels_last'.
        layer_idx: The layer index within `model.layers` whose filters needs to be visualized.
        filter_indices: filter indices within the layer to be maximized.
            For `keras.layers.Dense` layer, `filter_idx` is interpreted as the output index.

            If you are visualizing final `keras.layers.Dense` layer, you tend to get
            better results with 'linear' activation as opposed to 'softmax'. This is because 'softmax'
            output can be maximized by minimizing scores for other classes.

        seed_img: The input image for which activation map needs to be visualized.
        alpha: The alpha value of image as overlayed onto the heatmap. 
            This value needs to be between [0, 1], with 0 being heatmap only to 1 being image only (Default value = 0.5)

    Example:
        If you wanted to visualize attention over 'bird' category, say output index 22 on the
        final `keras.layers.Dense` layer, then, `filter_indices = [22]`, `layer = dense_layer`.

        One could also set filter indices to more than one value. For example, `filter_indices = [22, 23]` should
        (hopefully) show attention map that corresponds to both 22, 23 output categories.

    Returns:
        The heatmap image, overlayed with `seed_img` using `alpha`, indicating image regions that, when changed, 
        would contribute the most towards maximizing the output of `filter_indices`.
    """
    if alpha < 0. or alpha > 1.:
        raise ValueError("`alpha` needs to be between [0, 1]")

    filter_indices = utils.listify(filter_indices)
    print("Working on filters: {}".format(pprint.pformat(filter_indices)))

    losses = [
        (ActivationMaximization(model.layers[layer_idx], filter_indices), 1)
    ]
    opt = Optimizer(model.input, losses)
    grads = opt.minimize(max_iter=1, verbose=False, seed_img=seed_img)[1]

    # We are minimizing loss as opposed to maximizing output as with the paper.
    # So, negative gradients here mean that they reduce loss, maximizing class probability.
    grads *= -1

    s, c, row, col = utils.get_img_indices()
    grads = np.max(np.abs(grads), axis=c)

    # Normalize and zero out low probabilities for a cleaner output.
    grads /= np.max(grads)

    heatmap = np.uint8(cm.jet(grads)[..., :3] * 255)

    heatmap[np.where(grads < 0.2)] = 0

    heatmap = np.uint8(seed_img * alpha + heatmap * (1. - alpha))
    return grads
项目:POWER    作者:pennelise    | 项目源码 | 文件源码
def _init_plot(self, dir, var, **kwargs):
        """
        Internal method used by all plotting commands
        """
        #self.cla()
        null = kwargs.pop('zorder', None)

        #Init of the bins array if not set
        bins = kwargs.pop('bins', None)
        if bins is None:
            bins = np.linspace(np.min(var), np.max(var), 6)
        if isinstance(bins, int):
            bins = np.linspace(np.min(var), np.max(var), bins)
        bins = np.asarray(bins)
        nbins = len(bins)

        #Number of sectors
        nsector = kwargs.pop('nsector', None)
        if nsector is None:
            nsector = 16

        #Sets the colors table based on the colormap or the "colors" argument
        colors = kwargs.pop('colors', None)
        cmap = kwargs.pop('cmap', None)
        if colors is not None:
            if isinstance(colors, str):
                colors = [colors]*nbins
            if isinstance(colors, (tuple, list)):
                if len(colors) != nbins:
                    raise ValueError("colors and bins must have same length")
        else:
            if cmap is None:
                cmap = cm.jet
            colors = self._colors(cmap, nbins)

        #Building the angles list
        angles = np.arange(0, -2*np.pi, -2*np.pi/nsector) + np.pi/2

        normed = kwargs.pop('normed', False)
        blowto = kwargs.pop('blowto', False)

        #Set the global information dictionnary
        self._info['dir'], self._info['bins'], self._info['table'] = histogram(dir, var, bins, nsector, normed, blowto)

        return bins, nbins, nsector, colors, angles, kwargs
项目:l1l2py    作者:slipguru    | 项目源码 | 文件源码
def kcv_errors(errors, range_x, range_y, label_x, label_y):
    r"""Plot a 3D error surface.

    Parameters
    ----------
    errors : (N, D) ndarray
        Error matrix.
    range_x : array_like of N values
        First axis values.
    range_y : array_like of D values
        Second axis values.
    label_x : str
        First axis label.
    label_y : str
        Second axis label.

    Examples
    --------
    >>> errors = numpy.empty((20, 10))
    >>> x = numpy.arange(20)
    >>> y = numpy.arange(10)
    >>> for i in range(20):
    ...     for j in range(10):
    ...         errors[i, j] = (x[i] * y[j])
    ...
    >>> kcv_errors(errors, x, y, 'x', 'y')
    >>> plt.show()

    """
    fig = plt.figure()
    ax = Axes3D(fig)

    x_vals, y_vals = np.meshgrid(range_x, range_y)
    x_idxs, y_idxs = np.meshgrid(np.arange(len(range_x)),
                                 np.arange(len(range_y)))

    ax.set_xlabel(label_x)
    ax.set_ylabel(label_y)
    ax.set_zlabel('$error$')

    ax.plot_surface(x_vals, y_vals, errors[x_idxs, y_idxs],
                    rstride=1, cstride=1, cmap=cm.jet)
项目:dataArtist    作者:radjkarl    | 项目源码 | 文件源码
def updateView(self, force=False, xRange=None):
        if self.changed:
            s = self.surface
            s.clear()
            for d in self.data:
                n = d.shape[0] // 50  # plot max 50x50 planes
                if n < 1:
                    n = 1
                data = d.transpose(2, 0, 1)
                s.plot_surface(
                    data[
                        0, ::n, ::n], data[
                        1, ::n, ::n], data[
                        2, ::n, ::n], cmap=cm.jet)

                # s._changed = False
            # s.pbaspect = [1.0, 1.0, 1.0]
            if xRange is not None:
                s.set_xlim(xRange)
            #             if yRange != None:
            #                 s.set_ylim(yRange)
            #             if zRange != None:
            #                 if xRange:
            #                 s.get_zlim()
            #                 s.set_zlim(zRange)
            s.pbaspect = [1, 1, 1]
            # else:
            #    s.set_zlim(s.get_zlim())
            #    s.axis('equal')
            # s.invert_zaxis()
            self.fig.tight_layout()
            self.draw()
            self.changed = False

# if d.changed:
#                 self.curves[n].updateItems()
#                 d.changed = False


# class _PlotData(list):
#     def __init__(self, l):
#         list.__init__(self, l)
#         self.changed = True
项目:PyFrac    作者:GeoEnergyLab-EPFL    | 项目源码 | 文件源码
def plot_fracture(self, Elem_Identifier, Parameter_Identifier, analytical=0, identify=[], mat_Properties=None):
        """
        Plots the given parameter of the specified  cells;

            Arguments:
                Elem_Identifier(string):        elements to be printed; possible options:
                                                    complete
                                                    channel
                                                    crack
                                                    ribbon
                Parameter_Identifier(string):   parameter to be ploted; possible options:
                                                    width
                                                    pressure
                                                    viscosity
                                                    footPrint
                analytical (float):             radius of fracture footprint calculated analytically.
                                                not plotted if not given. (or Zero ?)
                evol (boolean):                 fracture evolution plot flag. Set to true will print fracture
                                                evolution with time.
                identify (ndarray):             plot the cells in the provided list with cell number and different color
                                                to identify. This option can be used in debugging.
                perpendicular (bool):           if true, perpendicular from the zero vertex on the fracture fron will be
                                                drawn. This can be used for debugging.
        """

        if Elem_Identifier == 'complete':
            Elts = np.arange(self.mesh.NumberOfElts)
        elif Elem_Identifier == 'channel':
            Elts = self.EltChannel
        elif Elem_Identifier == 'crack':
            Elts = self.EltCrack
        elif Elem_Identifier == 'ribbon':
            Elts = self.EltRibbon
        elif Elem_Identifier == 'tip':
            Elts = self.EltTip
        else:
            print('invalid element identifier')
            return

        values = np.zeros((self.mesh.NumberOfElts), float)
        if Parameter_Identifier == 'width':
            values[Elts] = self.w[Elts]
        elif Parameter_Identifier == 'pressure':
            values[Elts] = self.p[Elts]
        elif Parameter_Identifier == 'muPrime':
            values[Elts] = self.muPrime[Elts]
        elif Parameter_Identifier == 'footPrint':
            fig = self.print_fracture_trace(analytical, identify, mat_Properties)
            return fig
        else:
            print('invalid parameter identifier')
            return None

        fig = plt.figure()
        ax = fig.gca(projection='3d')
        ax.plot_trisurf(self.mesh.CenterCoor[:, 0], self.mesh.CenterCoor[:, 1], values, cmap=cm.jet, linewidth=0.2)
        return fig

    ######################################
项目:mlprojects-py    作者:srinathperera    | 项目源码 | 文件源码
def product_raw_stats():
    df = pd.read_csv('/Users/srinath/playground/data-science/BimboInventoryDemand/train.csv')

    #df = pd.read_csv('/Users/srinath/playground/data-science/BimboInventoryDemand/trainitems300.csv')

    grouped = df.groupby(['Semana'])['Demanda_uni_equil'].mean()

    plt.figure(1, figsize=(20,10))
    plt.subplot(321)
    plt.xlabel('Semana', fontsize=18)
    plt.ylabel('Mean', fontsize=18)
    #plt.yscale('log')
    #plt.xscale('log')
    plt.scatter(df['Semana'].values, df['Demanda_uni_equil'].values, alpha=0.5)

    grouped = df.groupby(['Semana'])['Demanda_uni_equil'].mean()
    plt.subplot(322)
    plt.xlabel('Slope', fontsize=18)
    plt.ylabel('Mean Error', fontsize=18)
    plt.scatter(grouped.index.values, grouped.values, alpha=0.5)

    grouped = df.groupby(['Semana', 'Producto_ID'])['Demanda_uni_equil'].mean()
    valuesDf = grouped.to_frame("Mean")
    valuesDf.reset_index(inplace=True)


    plt.subplot(323)
    plt.xlabel('Semana', fontsize=18)
    plt.ylabel('Mean Error', fontsize=18)
    plt.scatter(valuesDf['Semana'], valuesDf["Mean"], alpha=0.5)


    grouped = df.groupby(['Semana', 'Producto_ID'])['Demanda_uni_equil'].count()
    valuesDf = grouped.to_frame("count")
    valuesDf.reset_index(inplace=True)


    plt.subplot(324)

    X = valuesDf['Semana']
    Y = valuesDf['Producto_ID']
    plt.hexbin(valuesDf['Semana'], valuesDf['Producto_ID'], C=valuesDf['count'], cmap=CM.jet, gridsize=30, bins=50)
    plt.axis([X.min(), X.max(), Y.min(), Y.max()])

    cb = plt.colorbar()
    cb.set_label('mean value')

    plt.tight_layout()
    plt.show()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_parallel_coordinates(self):
        from pandas.tools.plotting import parallel_coordinates
        from matplotlib import cm

        df = self.iris

        ax = _check_plot_works(parallel_coordinates,
                               frame=df, class_column='Name')
        nlines = len(ax.get_lines())
        nxticks = len(ax.xaxis.get_ticklabels())

        rgba = ('#556270', '#4ECDC4', '#C7F464')
        ax = _check_plot_works(parallel_coordinates,
                               frame=df, class_column='Name', color=rgba)
        self._check_colors(
            ax.get_lines()[:10], linecolors=rgba, mapping=df['Name'][:10])

        cnames = ['dodgerblue', 'aquamarine', 'seagreen']
        ax = _check_plot_works(parallel_coordinates,
                               frame=df, class_column='Name', color=cnames)
        self._check_colors(
            ax.get_lines()[:10], linecolors=cnames, mapping=df['Name'][:10])

        ax = _check_plot_works(parallel_coordinates,
                               frame=df, class_column='Name', colormap=cm.jet)
        cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
        self._check_colors(
            ax.get_lines()[:10], linecolors=cmaps, mapping=df['Name'][:10])

        ax = _check_plot_works(parallel_coordinates,
                               frame=df, class_column='Name', axvlines=False)
        assert len(ax.get_lines()) == (nlines - nxticks)

        colors = ['b', 'g', 'r']
        df = DataFrame({"A": [1, 2, 3],
                        "B": [1, 2, 3],
                        "C": [1, 2, 3],
                        "Name": colors})
        ax = parallel_coordinates(df, 'Name', color=colors)
        handles, labels = ax.get_legend_handles_labels()
        self._check_colors(handles, linecolors=colors)

        with tm.assert_produces_warning(FutureWarning):
            parallel_coordinates(data=df, class_column='Name')
        with tm.assert_produces_warning(FutureWarning):
            parallel_coordinates(df, 'Name', colors=colors)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_line_colors(self):
        import sys
        from matplotlib import cm

        custom_colors = 'rgcby'
        df = DataFrame(randn(5, 5))

        ax = df.plot(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)

        tmp = sys.stderr
        sys.stderr = StringIO()
        try:
            tm.close()
            ax2 = df.plot(colors=custom_colors)
            lines2 = ax2.get_lines()
            for l1, l2 in zip(ax.get_lines(), lines2):
                self.assertEqual(l1.get_color(), l2.get_color())
        finally:
            sys.stderr = tmp

        tm.close()

        ax = df.plot(colormap='jet')
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
        tm.close()

        ax = df.plot(colormap=cm.jet)
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
        tm.close()

        # make color a list if plotting one column frame
        # handles cases like df.plot(color='DodgerBlue')
        ax = df.ix[:, [0]].plot(color='DodgerBlue')
        self._check_colors(ax.lines, linecolors=['DodgerBlue'])

        ax = df.plot(color='red')
        self._check_colors(ax.get_lines(), linecolors=['red'] * 5)
        tm.close()

        # GH 10299
        custom_colors = ['#FF0000', '#0000FF', '#FFFF00', '#000000', '#FFFFFF']
        ax = df.plot(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)
        tm.close()

        with tm.assertRaises(ValueError):
            # Color contains shorthand hex value results in ValueError
            custom_colors = ['#F00', '#00F', '#FF0', '#000', '#FFF']
            # Forced show plot
            _check_plot_works(df.plot, color=custom_colors)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_area_colors(self):
        from matplotlib import cm
        from matplotlib.collections import PolyCollection

        custom_colors = 'rgcby'
        df = DataFrame(rand(5, 5))

        ax = df.plot.area(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)
        poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
        self._check_colors(poly, facecolors=custom_colors)

        handles, labels = ax.get_legend_handles_labels()
        # legend is stored as Line2D, thus check linecolors
        linehandles = [x for x in handles if not isinstance(x, PolyCollection)]
        self._check_colors(linehandles, linecolors=custom_colors)
        for h in handles:
            self.assertTrue(h.get_alpha() is None)
        tm.close()

        ax = df.plot.area(colormap='jet')
        jet_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=jet_colors)
        poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
        self._check_colors(poly, facecolors=jet_colors)

        handles, labels = ax.get_legend_handles_labels()
        linehandles = [x for x in handles if not isinstance(x, PolyCollection)]
        self._check_colors(linehandles, linecolors=jet_colors)
        for h in handles:
            self.assertTrue(h.get_alpha() is None)
        tm.close()

        # When stacked=False, alpha is set to 0.5
        ax = df.plot.area(colormap=cm.jet, stacked=False)
        self._check_colors(ax.get_lines(), linecolors=jet_colors)
        poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
        jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors]
        self._check_colors(poly, facecolors=jet_with_alpha)

        handles, labels = ax.get_legend_handles_labels()
        # Line2D can't have alpha in its linecolor
        self._check_colors(handles[:len(jet_colors)], linecolors=jet_colors)
        for h in handles:
            self.assertEqual(h.get_alpha(), 0.5)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_kde_colors_and_styles_subplots(self):
        tm._skip_if_no_scipy()
        _skip_if_no_scipy_gaussian_kde()

        from matplotlib import cm
        default_colors = self._maybe_unpack_cycler(self.plt.rcParams)

        df = DataFrame(randn(5, 5))

        axes = df.plot(kind='kde', subplots=True)
        for ax, c in zip(axes, list(default_colors)):
            self._check_colors(ax.get_lines(), linecolors=[c])
        tm.close()

        # single color char
        axes = df.plot(kind='kde', color='k', subplots=True)
        for ax in axes:
            self._check_colors(ax.get_lines(), linecolors=['k'])
        tm.close()

        # single color str
        axes = df.plot(kind='kde', color='red', subplots=True)
        for ax in axes:
            self._check_colors(ax.get_lines(), linecolors=['red'])
        tm.close()

        custom_colors = 'rgcby'
        axes = df.plot(kind='kde', color=custom_colors, subplots=True)
        for ax, c in zip(axes, list(custom_colors)):
            self._check_colors(ax.get_lines(), linecolors=[c])
        tm.close()

        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        for cmap in ['jet', cm.jet]:
            axes = df.plot(kind='kde', colormap=cmap, subplots=True)
            for ax, c in zip(axes, rgba_colors):
                self._check_colors(ax.get_lines(), linecolors=[c])
            tm.close()

        # make color a list if plotting one column frame
        # handles cases like df.plot(color='DodgerBlue')
        axes = df.ix[:, [0]].plot(kind='kde', color='DodgerBlue',
                                  subplots=True)
        self._check_colors(axes[0].lines, linecolors=['DodgerBlue'])

        # single character style
        axes = df.plot(kind='kde', style='r', subplots=True)
        for ax in axes:
            self._check_colors(ax.get_lines(), linecolors=['r'])
        tm.close()

        # list of styles
        styles = list('rgcby')
        axes = df.plot(kind='kde', style=styles, subplots=True)
        for ax, c in zip(axes, styles):
            self._check_colors(ax.get_lines(), linecolors=[c])
        tm.close()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_boxplot_colors(self):
        def _check_colors(bp, box_c, whiskers_c, medians_c, caps_c='k',
                          fliers_c='b'):
            self._check_colors(bp['boxes'],
                               linecolors=[box_c] * len(bp['boxes']))
            self._check_colors(bp['whiskers'],
                               linecolors=[whiskers_c] * len(bp['whiskers']))
            self._check_colors(bp['medians'],
                               linecolors=[medians_c] * len(bp['medians']))
            self._check_colors(bp['fliers'],
                               linecolors=[fliers_c] * len(bp['fliers']))
            self._check_colors(bp['caps'],
                               linecolors=[caps_c] * len(bp['caps']))

        default_colors = self._maybe_unpack_cycler(self.plt.rcParams)

        df = DataFrame(randn(5, 5))
        bp = df.plot.box(return_type='dict')
        _check_colors(bp, default_colors[0], default_colors[0],
                      default_colors[2])
        tm.close()

        dict_colors = dict(boxes='#572923', whiskers='#982042',
                           medians='#804823', caps='#123456')
        bp = df.plot.box(color=dict_colors, sym='r+', return_type='dict')
        _check_colors(bp, dict_colors['boxes'], dict_colors['whiskers'],
                      dict_colors['medians'], dict_colors['caps'], 'r')
        tm.close()

        # partial colors
        dict_colors = dict(whiskers='c', medians='m')
        bp = df.plot.box(color=dict_colors, return_type='dict')
        _check_colors(bp, default_colors[0], 'c', 'm')
        tm.close()

        from matplotlib import cm
        # Test str -> colormap functionality
        bp = df.plot.box(colormap='jet', return_type='dict')
        jet_colors = lmap(cm.jet, np.linspace(0, 1, 3))
        _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2])
        tm.close()

        # Test colormap functionality
        bp = df.plot.box(colormap=cm.jet, return_type='dict')
        _check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2])
        tm.close()

        # string color is applied to all artists except fliers
        bp = df.plot.box(color='DodgerBlue', return_type='dict')
        _check_colors(bp, 'DodgerBlue', 'DodgerBlue', 'DodgerBlue',
                      'DodgerBlue')

        # tuple is also applied to all artists except fliers
        bp = df.plot.box(color=(0, 1, 0), sym='#123456', return_type='dict')
        _check_colors(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0),
                      (0, 1, 0), '#123456')

        with tm.assertRaises(ValueError):
            # Color contains invalid key results in ValueError
            df.plot.box(color=dict(boxes='red', xxxx='blue'))