我们从Python开源项目中,提取了以下21个代码示例,用于说明如何使用matplotlib.cm.Greys_r()。
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False): """Plot x, y and y_hat side by side.""" plt.close("all") f = plt.figure(figsize=(15, 10.8), dpi=300) gs = gridspec.GridSpec(1, 3) if binz: y_hat = (y_hat > 0.5) * 1. ims = [x, y, y_hat] tils = [ "x:" + str(xsz) + "x" + str(xsz), "y:" + str(ysz) + "x" + str(ysz), "yhat:" + str(ysz) + "x" + str(ysz)] for n, ti in zip([0, 1, 2], tils): f.add_subplot(gs[n]) if n == 0: plt.imshow(ims[n], cmap=cm.Greys_r) else: plt.imshow(ims[n], cmap=cm.Greys_r) plt.title(ti) return f
def plot_x_x_yhat(x, x_hat): """Plot x, y and y_hat side by side.""" plt.close("all") f = plt.figure() # figsize=(15, 10.8), dpi=300 gs = gridspec.GridSpec(1, 2) ims = [x, x_hat] tils = [ "xin:" + str(x.shape[0]) + "x" + str(x.shape[1]), "xout:" + str(x.shape[1]) + "x" + str(x_hat.shape[1])] for n, ti in zip([0, 1], tils): f.add_subplot(gs[n]) plt.imshow(ims[n], cmap=cm.Greys_r) plt.title(ti) ax = f.gca() ax.set_axis_off() return f
def debug_plot_over_img(self, img, x, y, bb_d, bb_gt): """Plot the landmarks over the image with the bbox.""" plt.close("all") fig = plt.figure() # , figsize=(15, 10.8), dpi=200 ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() ax.imshow(img, aspect="auto", cmap='Greys_r') ax.scatter(x, y, s=10, color='r') rect1 = patches.Rectangle( (bb_d[0], bb_d[1]), bb_d[2]-bb_d[0], bb_d[3]-bb_d[1], linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect1) rect2 = patches.Rectangle( (bb_gt[0], bb_gt[1]), bb_gt[2]-bb_gt[0], bb_gt[3]-bb_gt[1], linewidth=1, edgecolor='b', facecolor='none') ax.add_patch(rect2) fig.add_axes(ax) return fig
def debug_draw_set(self, path_f, fd_out): if not os.path.exists(fd_out): os.makedirs(fd_out) with open(path_f, 'r') as f: stuff = pkl.load(f) for el in stuff: img_name = el["img_name"] print img_name img_gray = el["img_gray"] bb_d = el["bb_detector"] bb_gt = el["bb_ground_truth"] x = el["annox"] y = el["annoy"] fig = self.debug_plot_over_img(img_gray, x, y, bb_d, bb_gt) fig.savefig( fd_out+"/"+img_name, bbox_inches='tight', pad_inches=0, frameon=False, cmap=cm.Greys_r) del fig
def _write_images(x_sample, x_reconstruct, vae_name, filename, num_print=5, sup_title=None): fig = plt.figure(figsize=(8, 12)) if sup_title: fig.suptitle(sup_title) for i in range(num_print): if x_sample is not None: plt.subplot(num_print, 2, 2*i + 1) #plt.imshow(x_sample[i].reshape(32, 32, 3))#, vmin=0, vmax=1) plt.imshow(x_sample[i].reshape(28, 28), cmap='Greys')#, vmin=0, vmax=1) plt.title("Test input") plt.colorbar() plt.subplot(num_print, 2, 2*i + 2) # plt.imshow(x_reconstruct[i].reshape(32, 32, 3))#, vmin=0, vmax=1) plt.imshow(x_reconstruct[i].reshape(28, 28), cmap='Greys')#, vmin=0, vmax=1) plt.title("Reconstruction") plt.colorbar() plt.savefig(filename, bbox_inches='tight', cmap=cm.Greys_r) plt.close()
def show_landmarks_unit_test(self, im, phis_pred, phis_mean_train, bbox, save=False, path="../im.png"): """ Display a shape over the face image. (python) phis_pred: predicted phis [xxxyyy] phis_mean_train: mean phis of ground of truth bbox=[x y w h] im = np.ndarray """ plt.close('all') if save: plt.ioff() nfids = int(len(phis_pred)/2) plt.imshow(im, cmap = cm.Greys_r) gt = plt.scatter(x=phis_mean_train[0:nfids], y=phis_mean_train[nfids:], c='g', s=40) pr = plt.scatter(x=phis_pred[0:nfids], y=phis_pred[nfids:], c='r', s=20) mse = np.mean(np.power((phis_pred - phis_mean_train), 2)) plt.legend((gt, pr), ("mean shape train", "prediction, MSE="+str(mse)), scatterpoints=1,loc='lower left', fontsize=8, fancybox=True, shadow=True) """ plt.plot([bbox[0], bbox[0]],[bbox[1],bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0], bbox[0]+bbox[2]],[bbox[1], bbox[1]],'-b', linewidth=1) plt.plot([bbox[0]+bbox[2], bbox[0]+bbox[2]],[bbox[1], bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0] ,bbox[0]+bbox[2]],[bbox[1]+bbox[3] ,bbox[1]+bbox[3]],'-b', linewidth=1) """ plt.axis('off') if save: plt.savefig(path,bbox_inches='tight', dpi=1000) plt.ion() else: plt.show() raw_input("... Press ENTER to continue,") plt.close('all')
def show_only_landmarks_unit_test(self, im, phis_pred, bbox, save=False, path="../im.png"): """ Display a shape over the face image. (python) phis_pred: predicted phis [xxxyyy] phis_mean_train: mean phis of ground of truth bbox=[x y w h] im = np.ndarray """ plt.close('all') if save: plt.ioff() nfids = int(len(phis_pred)/2) plt.imshow(im, cmap = cm.Greys_r) pr = plt.scatter(x=phis_pred[0:nfids], y=phis_pred[nfids:], c='w', s=20) plt.legend([pr], ["prediction"], scatterpoints=1,loc='lower left', fontsize=8, fancybox=True, shadow=True) """ plt.plot([bbox[0], bbox[0]],[bbox[1],bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0], bbox[0]+bbox[2]],[bbox[1], bbox[1]],'-b', linewidth=1) plt.plot([bbox[0]+bbox[2], bbox[0]+bbox[2]],[bbox[1], bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0] ,bbox[0]+bbox[2]],[bbox[1]+bbox[3] ,bbox[1]+bbox[3]],'-b', linewidth=1) """ plt.axis('off') if save: plt.savefig(path,bbox_inches='tight', dpi=100) plt.ion() else: plt.show() raw_input("... Press ENTER to continue,") plt.close('all')
def plot_code_recont_for_one_set(self, data, in_aes_path): """Plot x-code-x_hat for one set. """ x = data['x'] code = data['code'] reconst = data['reconstruction'] nbr = 10 # plot only 100 samples ... just to see. for i in xrange(nbr): # x xx = x[i] sz_x = xx.shape[0] sqrt_sz_x = int (np.sqrt(sz_x)) xx = np.resize(xx, sqrt_sz_x ** 2).reshape(sqrt_sz_x, sqrt_sz_x) # code c = code[i] sz_c = c.shape[0] sqrt_sz_c = int (np.sqrt(sz_c)) c = np.resize(c, sqrt_sz_c ** 2).reshape(sqrt_sz_c, sqrt_sz_c) # reconstruction recon = reconst[i] sz_recon= recon.shape[0] sqrt_sz_recon = int (np.sqrt(sz_recon)) recon = np.resize(recon, sqrt_sz_recon ** 2).reshape(sqrt_sz_recon, sqrt_sz_recon) # plotting .. fig, axs = plt.subplots(3) fig.tight_layout() xx_ax = axs[0].imshow(xx, cmap = cm.Greys_r) axs[0].set_title('x') fig.colorbar(xx_ax, ax=axs[0]) c_ax = axs[1].imshow(c) axs[1].set_title('code') c_ax.set_cmap('spectral') fig.colorbar(c_ax, ax=axs[1]) recon_ax = axs[2].imshow(recon, cmap = cm.Greys_r) axs[2].set_title('x_hat') fig.colorbar(recon_ax, ax=axs[2]) fig.savefig(in_aes_path+str(i)+".png",bbox_inches='tight') plt.close("all")
def getLBP(img): img2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) radius = 1 n_points = 8 * radius lbpImage = (local_binary_pattern(img2, n_points, radius)).astype(int)**(1.0/radius) # block processing: lbpImages = block_view(lbpImage, ( int(lbpImage.shape[0] / 2), int(lbpImage.shape[1] / 4))) count = 0 LBP = np.array([]); for i in range(lbpImages.shape[0]): # for each block: for j in range(lbpImages.shape[1]): count += 1 # plt.subplot(4,2,count) # plt.imshow(lbpImages[i,j,:,:],cmap = cm.Greys_r) # plt.subplot(4,2,count+4*2/2) # print count*2+1 LBPt = cv2.calcHist([lbpImages[i,j,:,:].astype('uint8')], [0], None, [8], [0, 256]) LBP = np.append(LBP, LBPt[:,0]); # plt.plot(LBPt) # plt.show() Fnames = ["LBP"+str(i).zfill(2) for i in range(len(LBP))] return normalize(LBP).tolist(), Fnames
def get_bordershadow(self, bg_arr, colour): """ Gets a border/shadow with the movement state [top, right, bottom, left]. Inset or outset is random. """ bs = self.borderstate.get_sample() outset = bs['outset'] width = bs['width'] position = bs['position'] # make a copy border_arr = bg_arr.copy() # re-colour border_arr[...,0] = colour if outset: # dilate black (erode white) border_arr[...,1] = ndimage.grey_dilation(border_arr[...,1], size=(width, width)) border_arr = self.arr_scroll(border_arr, position[0], position[1]) # canvas = 255*n.ones(bg_arr.shape) # canvas = grey_blit(border_arr, canvas) # canvas = grey_blit(bg_arr, canvas) # pyplot.imshow(canvas[...,0], cmap=cm.Greys_r) # pyplot.show() return border_arr, bg_arr else: # erode black (dilate white) border_arr[...,1] = ndimage.grey_erosion(border_arr[...,1], size=(width, width)) return bg_arr, border_arr
def add_fillimage(self, arr): """ Adds a fill image to the array. For blending this might be useful: - http://stackoverflow.com/questions/601776/what-do-the-blend-modes-in-pygame-mean - http://stackoverflow.com/questions/5605174/python-pil-function-to-divide-blend-two-images """ fis = self.fillimstate.get_sample(arr) image = fis['image'] blend_mode = fis['blend_mode'] blend_amount = fis['blend_amount'] blend_order = fis['blend_order'] # change alpha of the image if blend_amount > 0: if blend_order: image[...,1] *= blend_amount arr = grey_blit(image, arr, blend_mode=blend_mode) else: arr[...,1] *= (1 - blend_amount) arr = grey_blit(arr, image, blend_mode=blend_mode) # pyplot.imshow(image[...,0], cmap=cm.Greys_r) # pyplot.show() return arr
def visualize_jackal(figure, pose, img): pyplot.cla() fig = figure ax = fig.add_subplot(111) ax.imshow(img, cmap=cm.Greys_r) ax.axis('image') if pose: meter_to_pixel = 10.6 xl = pose[0]*meter_to_pixel yl = pose[1]*meter_to_pixel dl = pose[2] ax.plot(xl, yl, 'ro', markersize=10) L1 = 0.8*meter_to_pixel L2 = 1.6*meter_to_pixel car=[(xl-L1,yl-L1), (xl-L1,yl+ L1), (xl, yl+L2), (xl+L1, yl+L1), (xl+L1,yl-L1)] polygon2 = Polygon(transform(car, [xl,yl],dl+3.14), fill = True, facecolor='blue', edgecolor='blue', lw=4, zorder=2) ax.add_patch(polygon2) ax.grid() #fig.subplots_adjust(0.003,0.062,0.97,0.94) #pyplot.show() pyplot.pause(0.01) return fig #============================== #==============================
def generate_images_line_save(self, line_segment, query_id, image_original_space=None): """ ID of query point from which query line was generated is added to the filename of the saved line query. :param line_segment: :param query_id: :return: """ try: if image_original_space is not None: x = self.generative_model.decode(image_original_space.T) else: x = self.generative_model.decode(to_vector(self.dataset.data["features"][ query_id]).T) # comes from dataset.data["features"], so is already in original space in which ALI operates. save_path = os.path.join(self.save_path_queries, "pointquery_%d_%d.png" % (self.n_queries + 1, query_id)) if x.shape[1] == 1: plt.imsave(save_path, x[0, 0, :, :], cmap=cm.Greys) else: plt.imsave(save_path, x[0, :, :, :].transpose(1, 2, 0), cmap=cm.Greys_r) decoded_images = self.generative_model.decode(self.dataset.scaling_transformation.inverse_transform( line_segment)) # Transform to original space, in which ALI operates. figure = plt.figure() grid = ImageGrid(figure, 111, (1, decoded_images.shape[0]), axes_pad=0.1) for image, axis in zip(decoded_images, grid): if image.shape[0] == 1: axis.imshow(image[0, :, :].squeeze(), cmap=cm.Greys, interpolation='nearest') else: axis.imshow(image.transpose(1, 2, 0).squeeze(), cmap=cm.Greys_r, interpolation='nearest') axis.set_yticklabels(['' for _ in range(image.shape[1])]) axis.set_xticklabels(['' for _ in range(image.shape[2])]) axis.axis('off') save_path = os.path.join(self.save_path_queries, "linequery_%d_%d.pdf" % (self.n_queries + 1, query_id)) plt.savefig(save_path, transparent=True, bbox_inches='tight') except Exception as e: print "EXCEPTION:", traceback.format_exc() raise e
def plot_single_scale(scale_lst, size): pylab.rcParams['figure.figsize'] = size, size/2 plt.figure() for i in range(0, len(scale_lst)): s=plt.subplot(1,5,i+1) plt.imshow(1-scale_lst[i], cmap = cm.Greys_r) #plt.imshow(1-scale_lst[i]) s.set_xticklabels([]) s.set_yticklabels([]) s.yaxis.set_ticks_position('none') s.xaxis.set_ticks_position('none') plt.tight_layout()
def plot_image(image, shape, shape_gt): implot = plt.imshow(image, cmap=cm.Greys_r) plt.scatter(shape_gt[:, 1], shape_gt[:, 0], color='blue') plt.scatter(shape[:, 1], shape[:, 0], color='green') plt.show()
def _draw(self, sample): pixelArray = [sample[j:j+self.WIDTH_IN_PIXELS] for j in xrange(0, len(sample), self.WIDTH_IN_PIXELS)] plt.imshow(zip(*pixelArray), cmap = cm.Greys_r, interpolation="nearest") plt.show()
def show_landmarks_points(self, im, phis_pred, phis_gt, bbox, nrmse=-1 ,save=False, path="../im.png"): """ Display a shape over the face image. (python) phis_pred: predicted phis [xxxyyy] phis_gt: phis of ground of truth bbox=[x y w h] im = np.ndarray nrmse: float (nrmse between gt and pred) """ plt.close('all') if save: plt.ioff() nfids = int(len(phis_pred)/2) plt.imshow(im, cmap = cm.Greys_r) if nrmse > 0: gt = plt.scatter(x=phis_gt[0:nfids], y=phis_gt[nfids:], c='g', s=40) pr = plt.scatter(x=phis_pred[0:nfids], y=phis_pred[nfids:], c='r', s=20) plt.legend((gt, pr), ("grund truth", "prediction, nrmse="+str(nrmse)), scatterpoints=1, fontsize=8, bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0., fancybox=True, shadow=True) else: # just display the landmarks of an image. gt=pred gt = plt.scatter(x=phis_gt[0:nfids], y=phis_gt[nfids:], c='g', s=20) plt.legend([gt], ["landmarks"], scatterpoints=1, fontsize=8, bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=1, mode="expand", borderaxespad=0., fancybox=True, shadow=True) """ plt.plot([bbox[0], bbox[0]],[bbox[1],bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0], bbox[0]+bbox[2]],[bbox[1], bbox[1]],'-b', linewidth=1) plt.plot([bbox[0]+bbox[2], bbox[0]+bbox[2]],[bbox[1], bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0] ,bbox[0]+bbox[2]],[bbox[1]+bbox[3] ,bbox[1]+bbox[3]],'-b', linewidth=1) """ plt.axis('off') if save: plt.savefig(path,bbox_inches='tight', dpi=100) plt.ion() else: plt.show() raw_input("... Press ENTER to continue,") plt.close('all')
def subgrids(file, res=25, cut=1, blim=23, rlim=22,overlap = 'No',outfile='out.txt'): # galfile='m101output24nol.txt' #res=24. if (overlap == 'Yes'): area = 4*res*res elif (overlap == 'No'): area = res*res sbfactor = 2.5*np.log10(area) xx,yy,bm,rm,ber,rer = np.genfromtxt(file,dtype = float, skiprows=1,unpack=True) Xn=np.divide(np.subtract(xx,min(xx)),res) +1. Yn=np.divide(np.subtract(yy,min(yy)),res) +1 mX=max(Xn) mY=max(Yn) xlen = len(Xn) ylen = len(Yn) br=[] color = [] Z = [] b = bm+sbfactor r = rm+sbfactor br=np.subtract(b,r) #Thinking about the cut off. If red is really red b/c blue is really faint # Need to change this as per resolution: # for 30 res (15, this was 23.1 and 22 resp) for i in range(len(br)): if br[i]<=cut: if b[i]>=blim: color.append('g') Z.append(0.) elif b[i]<blim: color.append('b') Z.append(abs(round(b[i],1)-blim)) elif br[i]>cut: if r[i]>=rlim: color.append('g') Z.append(0.) elif r[i]<rlim: color.append('r') Z.append(abs(round(r[i],1)-rlim)) #if you want to save to a text file at this point: np.savetxt(outfile,np.column_stack((Xn,Yn,Z)),fmt=('%5.2f','%5.2f','%10.5f')) Z = np.array(Z).reshape(mX,mY) plt.figure() #Below is for color #imshow(Z) #This is for grayscale plt.imshow(Z,cmap = cm.Greys_r) return Z,Xn,Yn,color ##Heat filter to get rid of stars ##First all of the special subroutines
def plot_results(x_test, x_test_im, sensMap, predDiff, tarFunc, classnames, testIdx, save_path): ''' Plot the results of the relevance estimation ''' imsize = x_test.shape tarIdx = np.argmax(tarFunc(x_test)[-1]) tarClass = classnames[tarIdx] #tarIdx = 287 plt.figure() plt.subplot(2,2,1) plt.imshow(x_test_im, interpolation='nearest') plt.title('original') frame = pylab.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.subplot(2,2,2) plt.imshow(sensMap, cmap=cm.Greys_r, interpolation='nearest') plt.title('sensitivity map') frame = pylab.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.subplot(2,2,3) p = predDiff.reshape((imsize[1],imsize[2],-1))[:,:,tarIdx] plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest') plt.colorbar() #plt.imshow(np.abs(p), cmap=cm.Greys_r) plt.title('weight of evidence') frame = pylab.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) plt.subplot(2,2,4) plt.title('class: {}'.format(tarClass)) p = get_overlayed_image(x_test_im, p) #p = predDiff[0,:,:,np.argmax(netPred(net, x_test)[0]),1].reshape((224,224)) plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest') #plt.title('class entropy') frame = pylab.gca() frame.axes.get_xaxis().set_ticks([]) frame.axes.get_yaxis().set_ticks([]) fig = plt.gcf() fig.set_size_inches(np.array([12,12]), forward=True) plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.savefig(save_path) plt.close()