我们从Python开源项目中,提取了以下3个代码示例,用于说明如何使用matplotlib.cm.hot()。
def plot(outfn, a, genomeSize, base2chr, _windowSize, dpi=300, ext="svg"): """Save contact plot""" def format_fn(tick_val, tick_pos): """Mark axis ticks with chromosome names""" if int(tick_val) in base2chr: return base2chr[int(tick_val)] else: sys.stderr.write("[WARNING] %s not in ticks!\n"%tick_val) return '' # invert base2chr base2chr = {genomeSize-b: c for b, c in base2chr.iteritems()} # start figure fig = plt.figure() ax = fig.add_subplot(111) ax.set_title("Contact intensity plot [%sk]"%(_windowSize/1000,)) # label Y axis with chromosome names if len(base2chr)<50: ax.yaxis.set_major_formatter(FuncFormatter(format_fn)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.yticks(base2chr.keys()) ax.set_ylabel("Chromosomes") else: ax.set_ylabel("Genome position") # label axes ax.set_xlabel("Genome position") plt.imshow(a+1, cmap=cm.hot, norm=LogNorm(), extent=(0, genomeSize, 0, genomeSize))# plt.colorbar() # save fig.savefig("%s.%s"%(outfn,ext), dpi=dpi, papertype="a4")
def plot_instance_probs_heatmap(instance_probs, save_path=None): """ Arguments: instance_probs (ndarray): shape = (n_instances, n_labels) the probability distribution of each instance """ n_instances, n_labels = instance_probs.shape fig, ax = plt.subplots() ax.set_title("Instance-Label Scoring Layer Visualized") cax = ax.imshow(instance_probs, vmin=0, vmax=1, cmap=cm.hot, aspect=float(n_labels) / n_instances) cbar_ticks = list(np.linspace(0, 1, 11)) cbar = fig.colorbar(cax, ticks=cbar_ticks) cbar.ax.set_yticklabels(map(str, cbar_ticks)) if save_path: if not osp.exists(osp.dirname(save_path)): os.makedirs(osp.dirname(save_path)) fig.savefig(save_path) else: plt.show()