Python matplotlib.dates 模块,MonthLocator() 实例源码

我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用matplotlib.dates.MonthLocator()

项目:learn-python    作者:GRC-SummerSchool    | 项目源码 | 文件源码
def plot_division (division_data):

    array__DIVISION = create_attribute_array(division_data, 'Division')
    array_YEARMONTH = create_attribute_array(division_data, 'YearMonth')
    array_TAVG = create_attribute_array(division_data, 'TAVG')
    array_PCP = create_attribute_array(division_data, 'PCP')

    plt.subplot(2, 1, 1)
    plt.plot(array_YEARMONTH, array_TAVG, 'ko-')
    # plt.gca().xaxis.set_major_locator(MonthLocator())
    # plt.gcf().autofmt_xdate()
    plt.title('Division ' + str(array__DIVISION[0]))
    plt.ylabel('TAVG (F)')

    plt.subplot(2, 1, 2)
    plt.plot(array_YEARMONTH, array_PCP, 'r.-')
    # plt.gca().xaxis.set_major_locator(MonthLocator())
    # plt.gcf().autofmt_xdate()
    plt.xlabel('YEARMONTH')
    plt.ylabel('PCP')

    plt.show()

# Calculate the mean of an array
项目:markov_stock_analysis    作者:nb5hd    | 项目源码 | 文件源码
def percent_change_as_time_plot(adjusted_df, security):
    """
    This function visualizes the percentage change data as a time series plot.

    :param adjusted_df: Pandas DataFrame with columns: Date, Adjusted Close, and Percentage Change.
    :param security: <SecurityInfo class> Holds information about the requested security
    """

    pct_change_list = adjusted_df['Percentage Change'].tolist()
    date_list = adjusted_df.index.values
    fig, ax = plt.subplots()
    ax.plot(date_list, pct_change_list)
    plt.xlabel("Dates")
    plt.ylabel("Percentage change from last period")
    if security.get_period() == "none":
        plt.title("Percentage change in " + security.get_name(), y=1.03)
    else:
        plt.title("Percentage change in " + security.get_name() + " " + security.get_period() + " data", y=1.03)
    ax.xaxis.set_minor_locator(MonthLocator())
    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.autoscale_view()
    fig.autofmt_xdate()

    plt.show()
项目:markov_stock_analysis    作者:nb5hd    | 项目源码 | 文件源码
def percent_change_as_time_plot(adjusted_df, security):
    """
    This function visualizes the percentage change data as a time series plot.

    :param adjusted_df: Pandas DataFrame with columns: Date, Adjusted Close, and Percentage Change.
    :param security: <SecurityInfo class> Holds information about the requested security
    """

    pct_change_list = adjusted_df['Percentage Change'].tolist()
    date_list = adjusted_df.index.values
    fig, ax = plt.subplots()
    ax.plot(date_list, pct_change_list)
    plt.xlabel("Dates")
    plt.ylabel("Percentage change from last period")
    if security.get_period() == "none":
        plt.title("Percentage change in " + security.get_name(), y=1.03)
    else:
        plt.title("Percentage change in " + security.get_name() + " " + security.get_period() + " data", y=1.03)
    ax.xaxis.set_minor_locator(MonthLocator())
    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.autoscale_view()
    fig.autofmt_xdate()

    plt.show()
项目:markov_stock_analysis    作者:nb5hd    | 项目源码 | 文件源码
def percent_change_as_time_plot(adjusted_df):
    """
    This function visualizes the percentage change data as a time series plot.

    :param adjusted_df: Pandas DataFrame with columns: Date, Adjusted Close, and Percentage Change.
    """

    pct_change_list = adjusted_df['Percentage Change'].tolist()
    date_list = adjusted_df.index.values
    fig, ax = plt.subplots()
    ax.plot(date_list, pct_change_list)
    #ax.plot(date_list, adjusted_df["Adjusted Close"])
    plt.xlabel("Years")
    plt.ylabel("Percentage change from last week")
    plt.title("Percentage change in S&P 500 weekly data from 2009 to 2016")
    ax.xaxis.set_minor_locator(MonthLocator())
    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.autoscale_view()
    fig.autofmt_xdate()

    plt.show()
项目:markov_stock_analysis    作者:nb5hd    | 项目源码 | 文件源码
def percent_change_as_time_plot(adjusted_df):
    """
    This function visualizes the percentage change data as a time series plot.

    :param adjusted_df: Pandas DataFrame with columns: Date, Adjusted Close, and Percentage Change.
    """

    pct_change_list = adjusted_df['Percentage Change'].tolist()
    date_list = [dt.datetime.strptime(d, '%Y-%m-%d').date() for d in adjusted_df['Date'].tolist()]
    fig, ax = plt.subplots()
    ax.plot(date_list, pct_change_list)
    plt.xlabel("Years")
    plt.ylabel("Percentage change from last week")
    plt.title("Percentage change in S&P 500 weekly data from 2009 to 2016")
    ax.xaxis.set_minor_locator(MonthLocator())
    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.autoscale_view()
    fig.autofmt_xdate()

    plt.show()
项目:markov_stock_analysis    作者:nb5hd    | 项目源码 | 文件源码
def percent_change_as_time_plot(adjusted_df, security):
    """
    This function visualizes the percentage change data as a time series plot.

    :param adjusted_df: Pandas DataFrame with columns: Date, Adjusted Close, and Percentage Change.
    :param security: <SecurityInfo class> Holds information about the requested security
    """

    pct_change_list = adjusted_df['Percentage Change'].tolist()
    date_list = adjusted_df.index.values
    fig, ax = plt.subplots()
    ax.plot(date_list, pct_change_list)
    plt.xlabel("Dates")
    plt.ylabel("Percentage change from last period")
    if security.get_period() == "none":
        plt.title("Percentage change in " + security.get_name(), y=1.03)
    else:
        plt.title("Percentage change in " + security.get_name() + " " + security.get_period() + " data", y=1.03)
    ax.xaxis.set_minor_locator(MonthLocator())
    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.autoscale_view()
    fig.autofmt_xdate()

    plt.show()
项目:htsprophet    作者:CollinRooney12    | 项目源码 | 文件源码
def plotYearly(dictframe, ax, uncertainty, color='#0072B2'):

    if ax is None:
        figY = plt.figure(facecolor='w', figsize=(10, 6))
        ax = figY.add_subplot(111)
    else:
        figY = ax.get_figure()
    ##
    # Find the max index for an entry of each month
    ##
    months = dictframe.ds.dt.month
    ind = []
    for month in range(1,13):
        ind.append(max(months[months == month].index.tolist()))
    ##
    # Plot from the minimum of those maximums on (this will almost certainly result in only 1 year plotted)
    ##
    ax.plot(dictframe['ds'][min(ind):], dictframe['yearly'][min(ind):], ls='-', c=color)
    if uncertainty:
        ax.fill_between(dictframe['ds'].values[min(ind):], dictframe['yearly_lower'][min(ind):], dictframe['yearly_upper'][min(ind):], color=color, alpha=0.2)
    ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
    months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
    ax.xaxis.set_major_formatter(FuncFormatter(
        lambda x, pos=None: '{dt:%B} {dt.day}'.format(dt=num2date(x))))
    ax.xaxis.set_major_locator(months)
    ax.set_xlabel('Day of year')
    ax.set_ylabel('yearly')
    figY.tight_layout()
    return figY
项目:pyktrader2    作者:harveywwu    | 项目源码 | 文件源码
def plot_price_series(df, ts_lab1, ts_lab2):
    #months = mdates.MonthLocator()  # every month
    fig, ax = plt.subplots()
    ax.plot(df.index, df[ts_lab1], label=ts_lab1)
    ax.plot(df.index, df[ts_lab2], label=ts_lab2)
    #ax.xaxis.set_major_locator(months)
    #ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
    ax.grid(True)
    fig.autofmt_xdate()
    plt.xlabel('Month/Year')
    plt.ylabel('Price ($)')
    plt.title('%s and %s Daily Prices' % (ts_lab1, ts_lab2))
    plt.legend()
    plt.show()
项目:pyktrader2    作者:harveywwu    | 项目源码 | 文件源码
def plot_series(ts):
    #months = mdates.MonthLocator()  # every month
    fig, ax = plt.subplots()
    ax.plot(ts.index, ts, label=ts.name)
    #ax.xaxis.set_major_locator(months)
    #ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
    #ax.set_xlim(datetime.datetime(2012, 1, 1), datetime.datetime(2013, 1, 1))
    ax.grid(True)
    fig.autofmt_xdate()
    plt.xlabel('Month/Year')
    plt.ylabel('Price ($)')
    plt.title('Residual Plot')
    plt.legend()
    plt.plot(ts)
    plt.show()
项目:augur    作者:nextstrain    | 项目源码 | 文件源码
def make_date_ticks(ax, fs=12):
    from matplotlib.dates import YearLocator, MonthLocator, DateFormatter
    years    = YearLocator()
    months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
    yearsFmt = DateFormatter('%Y')
    monthsFmt = DateFormatter("%b")
    ax.tick_params(axis='x', which='major', labelsize=fs, pad=20)
    ax.tick_params(axis='x', which='minor', pad=7)
    ax.xaxis.set_major_locator(years)
    ax.xaxis.set_major_formatter(yearsFmt)
    ax.xaxis.set_minor_locator(months)
    ax.xaxis.set_minor_formatter(monthsFmt)
项目:sentisignal    作者:jonathanmanfield    | 项目源码 | 文件源码
def plot_daily_inf_res(df, symbols=[], plot_top=0):
    df = df.copy()
    # data_nasdaq_top_100_preprocessed_merge.groupby('SYMBOL')
    years = mdates.YearLocator()   # every year
    months = mdates.MonthLocator()  # every month
    years_fmt = mdates.DateFormatter('%Y')

    df['max_pmi_is'] = df[[col for col in df.columns if 'pmi_is' in col]].max(axis=1)

    if len(symbols) > 0:
        df = df.loc[symbols]

    if plot_top > 0:
        idx = df.groupby('SYMBOL')['max_pmi_is'].max().sort_values(ascending=False).index[:plot_top].values
        print idx
        df = df.loc[list(idx)]
#         df = df.reindex(index=idx)

    fig, ax = plt.subplots(figsize=(15,5))
    for key, grp in df.groupby('SYMBOL'):
        print "key", key
    #     grp.reset_index()
    #     print grp.DATE

        ax.plot(grp.DATE.reset_index(drop=True), grp['max_pmi_is'], label=key)
    #     grp['D'] = pd.rolling_mean(grp['B'], window=5)    
    #     plt.plot(grp['D'], label='rolling ({k})'.format(k=key))

    # datemin = (df.DATE.min().year)
    # datemax = (df.DATE.max().year + 1)
    # print datemin, datemax
    # ax.set_xlim(datemin, datemax)
    ax.set_ylim(0, 500)


    plt.legend(loc='best')
    plt.ylabel('PMI IS (-2)')
    fig.autofmt_xdate()
    plt.show()
项目:prophet    作者:facebook    | 项目源码 | 文件源码
def plot_yearly(self, ax=None, uncertainty=True, yearly_start=0):
        """Plot the yearly component of the forecast.

        Parameters
        ----------
        ax: Optional matplotlib Axes to plot on. One will be created if
            this is not provided.
        uncertainty: Optional boolean to plot uncertainty intervals.
        yearly_start: Optional int specifying the start day of the yearly
            seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts
            by 1 day to Jan 2, and so on.

        Returns
        -------
        a list of matplotlib artists
        """
        artists = []
        if not ax:
            fig = plt.figure(facecolor='w', figsize=(10, 6))
            ax = fig.add_subplot(111)
        # Compute yearly seasonality for a Jan 1 - Dec 31 sequence of dates.
        days = (pd.date_range(start='2017-01-01', periods=365) +
                pd.Timedelta(days=yearly_start))
        df_y = self.seasonality_plot_df(days)
        seas = self.predict_seasonal_components(df_y)
        artists += ax.plot(
            df_y['ds'].dt.to_pydatetime(), seas['yearly'], ls='-', c='#0072B2')
        if uncertainty:
            artists += [ax.fill_between(
                df_y['ds'].dt.to_pydatetime(), seas['yearly_lower'],
                seas['yearly_upper'], color='#0072B2', alpha=0.2)]
        ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
        months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
        ax.xaxis.set_major_formatter(FuncFormatter(
            lambda x, pos=None: '{dt:%B} {dt.day}'.format(dt=num2date(x))))
        ax.xaxis.set_major_locator(months)
        ax.set_xlabel('Day of year')
        ax.set_ylabel('yearly')
        return artists
项目:themarketingtechnologist    作者:thomhopmans    | 项目源码 | 文件源码
def apply_date_formatting_to_axis(ax):
        """ Format x-axis of input plot to a readable date format """
        ax.xaxis.set_minor_locator(dates.WeekdayLocator(byweekday=(0), interval=1))
        ax.xaxis.set_minor_formatter(dates.DateFormatter('%d\n%a'))
        ax.xaxis.grid(True, which="minor")
        ax.yaxis.grid()
        ax.xaxis.set_major_locator(dates.MonthLocator())
        ax.xaxis.set_major_formatter(dates.DateFormatter('\n\n\n%b\n%Y'))
        return ax
项目:matplotlib    作者:DaveL17    | 项目源码 | 文件源码
def setAxisScaleX(self, x_axis_bins):
        """The setAxisScaleX() method sets the bins for the X axis. Presently,
        we assume a date-based axis."""
        if self.verboseLogging:
            self.logger.threaddebug(u"Constructing the bins for the X axis.")

        if x_axis_bins == 'quarter-hourly':
            plt.gca().xaxis.set_major_locator(mdate.HourLocator(interval=4))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 96)))
        if x_axis_bins == 'half-hourly':
            plt.gca().xaxis.set_major_locator(mdate.HourLocator(interval=4))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 48)))
        elif x_axis_bins == 'hourly':
            plt.gca().xaxis.set_major_locator(mdate.HourLocator(interval=4))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 24)))
        elif x_axis_bins == 'hourly_4':
            plt.gca().xaxis.set_major_locator(mdate.HourLocator(interval=4))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 8)))
        elif x_axis_bins == 'hourly_8':
            plt.gca().xaxis.set_major_locator(mdate.HourLocator(interval=4))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 4)))
        elif x_axis_bins == 'hourly_12':
            plt.gca().xaxis.set_major_locator(mdate.HourLocator(interval=4))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 2)))
        elif x_axis_bins == 'daily':
            plt.gca().xaxis.set_major_locator(mdate.DayLocator(interval=1))
            plt.gca().xaxis.set_minor_locator(mdate.HourLocator(byhour=range(0, 24, 6)))
        elif x_axis_bins == 'weekly':
            plt.gca().xaxis.set_major_locator(mdate.DayLocator(interval=7))
            plt.gca().xaxis.set_minor_locator(mdate.DayLocator(interval=1))
        elif x_axis_bins == 'monthly':
            plt.gca().xaxis.set_major_locator(mdate.MonthLocator(interval=1))
            plt.gca().xaxis.set_minor_locator(mdate.DayLocator(interval=1))
        elif x_axis_bins == 'yearly':
            plt.gca().xaxis.set_major_locator(mdate.YearLocator())
            plt.gca().xaxis.set_minor_locator(mdate.MonthLocator(interval=12))
项目:aliquant-python-client    作者:aliyun    | 项目源码 | 文件源码
def plot_backtest_result_curve(log_file):
    data_dict = read_result_from_log(log_file)
    #benchmark_dates, benchmark_value = sort_dict_buy_key(data_dict)
    portfolio_history_data = pd.DataFrame(data_dict).T
    portfolio_history_data.columns = ['total_value', 'cash', 'stock_value', 'bench_value']

    dates_ = list(portfolio_history_data.index)
    dates_.pop()
    dates = []
    for d in dates_:
        if d == None: 
            d = config.start_date

        date = datetime.datetime.strptime(d, '%Y-%m-%d').date() 
        dates.append(date)
    #dates = [datetime.datetime.strptime(d, '%Y-%m-%d').date() for d in dates if d != None else config.start_date]

    total_value = list(portfolio_history_data["total_value"].values)
    cash = list(portfolio_history_data["cash"].values)
    cash_value = list(portfolio_history_data["stock_value"].values)
    bench_value = list(portfolio_history_data["bench_value"].values)
    total_value.pop()
    bench_value.pop()
    # xaxis tick formatter
    plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    # xaxis ticks
    #plt.gca().xaxis.set_major_locator(mdates.MonthLocator())

    # figure title and legend
    plt.gca().legend()
    plt.gca().set(title="event factor backtesting porfolio value",
                  ylabel = "porfolio total value",
                  xlabel = "backtesting time")
    plt.locator_params(axis='x', nticks=10)
    plt.plot(dates, total_value)
    plt.plot(dates, bench_value)
    plt.gcf().autofmt_xdate()
    plt.show()

#data = read_result_from_log(sys.argv[1])
#plot_backtest_result_curve(data)
项目:Panacea    作者:grzeimann    | 项目源码 | 文件源码
def make_dateplot(x, y, outname, ylims=None):
    fig, ax = plt.subplots()
    fig.autofmt_xdate()
    ax.plot_date(x, y, ls='', marker='x')
    ax.xaxis.set_major_locator(MonthLocator())
    ax.xaxis.set_minor_locator(DayLocator())
    ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))
    ax.fmt_xdata = DateFormatter('%Y-%m-%d %H:%M:%S')
    if ylims is not None:
        ax.set_ylim(ylims)
    fig.savefig(outname, dpi=200)
    plt.close(fig)
项目:QTS_Research    作者:geome-mitbbs    | 项目源码 | 文件源码
def back_test_plot(self):
        import matplotlib.pyplot as plt
        import matplotlib.dates as mdates
        fig = plt.figure()
        all_lines = []
        ax = fig.add_subplot(111)
        ax.set_ylabel('PnL')
        has_right_ax = False
        if 'quant_index' in self.used_vars or \
            'quant_index1' in self.used_vars or \
            'quant_index2' in self.used_vars or \
            'quant_index3' in self.used_vars:
            has_right_ax = True
        dates = [ x[0] for x in self.pnls['portfolio'] ]
        for v in self.used_vars:
            if 'portfolio' in v:
                all_lines += ax.plot(dates, [x[1] for x in self.pnls[v]],label=v,linewidth=1)

        if has_right_ax:
            right_ax = ax.twinx()
            for v in self.used_vars:
                if 'index' in v:
                    all_lines += right_ax.plot(dates, self.quant_indices[v],label=v,linewidth=1,ls='dotted')

            right_ax.set_ylabel('quant_index')

        # format the ticks
        years = mdates.YearLocator()   # every year
        months = mdates.MonthLocator()  # every month
        yearsFmt = mdates.DateFormatter('%Y')

        ax.xaxis.set_major_locator(years)
        ax.xaxis.set_major_formatter(yearsFmt)
        ax.xaxis.set_minor_locator(months)
        datemin = min(dates)
        datemax = max(dates)
        ax.set_xlim(datemin, datemax)
        ax.format_xdata = mdates.DateFormatter('%Y-%m-%d')
        ax.grid(True)


        # rotates and right aligns the x labels, and moves the bottom of the
        # axes up to make room for them
        fig.autofmt_xdate()
        fig.tight_layout()
        plt.legend(all_lines,[l.get_label() for l in all_lines],loc='best')
        plt.show()
项目:SFBIStats    作者:royludo    | 项目源码 | 文件源码
def proportion_stackplot(df, output=None, xlabel='', ylabel='', title=''):
    """
    Pandas has a bug with it's plot(kind='area'). When moving the legend, the colors disappear.
    By default with pandas the legend sits on the graph, which is not a desired behavior.
    So this function imitates panda's formatting of an area plot, with a working well-placed legend.

    Parameters
    ----------
    df : pandas.Dataframe
        x must be a date series.
        y is any number of columns containing percentages that must add up to 100 for each row.
    output : string
        the complete output file name
    xlabel : string
    ylabel : string
    title : string

    Returns
    -------

    """

    column_names = df.columns.values
    x = df.index.date
    column_series_list = []
    for cname in column_names:
        column_series_list.append(pd.Series(df[cname]).tolist())
    fig, ax = plt.subplots()
    polys = ax.stackplot(x, column_series_list, alpha=0.8)
    ax.set_ylim([0, 100])
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    legends = []
    for poly in polys:
        legends.append(plt.Rectangle((0, 0), 1, 1, facecolor=poly.get_facecolor()[0]))
    # don't try to understand the legend displacement thing here. Believe me. Don't.
    plt.figlegend(legends, column_names, loc=7, bbox_to_anchor=(1.2 + legend_displace_factor(column_names), 0.5))
    plt.title(title, y=1.08)
    date_fmt_year = mDates.DateFormatter('%b\n%Y')
    date_fmt_month = mDates.DateFormatter('%b')
    ax.xaxis.set_major_locator(mDates.YearLocator())
    ax.xaxis.set_major_formatter(date_fmt_year)
    ax.xaxis.set_minor_locator(mDates.MonthLocator(bymonth=7))
    ax.xaxis.set_minor_formatter(date_fmt_month)
    plt.savefig(output, bbox_inches='tight')
    plt.close()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def getDatasForOneRouteForOneDepartureDate(route, departureDate):
    X = getOneRouteData(datas, route)
    minDeparture = np.amin(X[:,8])
    maxDeparture = np.amax(X[:,8])
    print minDeparture
    print maxDeparture

    # get specific departure date datas
    X = X[np.where(X[:, 8]==departureDate)[0], :]

    # get the x values
    xaxis = X[:,9] # observed date state
    print xaxis
    xaxis = departureDate-1-xaxis
    print xaxis

    tmp = xaxis
    startdate = "20151109"
    xaxis = [pd.to_datetime(startdate) + pd.DateOffset(days=state) for state in tmp]
    print xaxis

    # get the y values
    yaxis = X[:,12]


    # every monday
    mondays = WeekdayLocator(MONDAY)

    # every 3rd month
    months = MonthLocator(range(1, 13), bymonthday=1, interval=01)
    days = WeekdayLocator(byweekday=1, interval=2)
    monthsFmt = DateFormatter("%b. %d, %Y")

    fig, ax = plt.subplots()
    ax.plot_date(xaxis, yaxis, 'r--')
    ax.plot_date(xaxis, yaxis, 'bo')
    ax.xaxis.set_major_locator(days)
    ax.xaxis.set_major_formatter(monthsFmt)
    #ax.xaxis.set_minor_locator(mondays)
    ax.autoscale_view()
    #ax.xaxis.grid(False, 'major')
    #ax.xaxis.grid(True, 'minor')
    ax.grid(True)
    plt.xlabel('Date')
    plt.ylabel('Price in Euro')

    fig.autofmt_xdate()
    plt.show()

    """
    # plot
    line1, = plt.plot(xaxis, yaxis, 'r--')
    line2, = plt.plot(xaxis, yaxis, 'bo')
    #plt.legend([line2], ["Price"])
    plt.xlabel('States')
    plt.ylabel('Price in Euro')
    plt.show()
    """