Python matplotlib.image 模块,imsave() 实例源码

我们从Python开源项目中,提取了以下16个代码示例,用于说明如何使用matplotlib.image.imsave()

项目:yt    作者:yt-project    | 项目源码 | 文件源码
def compare_image_lists(new_result, old_result, decimals):
    fns = []
    for i in range(2):
        tmpfd, tmpname = tempfile.mkstemp(suffix='.png')
        os.close(tmpfd)
        fns.append(tmpname)
    num_images = len(old_result)
    assert(num_images > 0)
    for i in range(num_images):
        mpimg.imsave(fns[0], np.loads(zlib.decompress(old_result[i])))
        mpimg.imsave(fns[1], np.loads(zlib.decompress(new_result[i])))
        results = compare_images(fns[0], fns[1], 10**(-decimals))
        if results is not None:
            if os.environ.get("JENKINS_HOME") is not None:
                tempfiles = [line.strip() for line in results.split('\n')
                             if line.endswith(".png")]
                for fn in tempfiles:
                    sys.stderr.write("\n[[ATTACHMENT|{}]]".format(fn))
                sys.stderr.write('\n')
        assert_equal(results, None, results)
        for fn in fns:
            os.remove(fn)
项目:lipnet    作者:grishasergei    | 项目源码 | 文件源码
def make_liposomes(lip_class, n, out_dir):
    """

    :param lip_class:
    :param n:
    :param out_dir:
    :return:
    """
    try:
        os.makedirs(out_dir)
    except OSError as exc:
        if exc.errno != errno.EEXIST:
            raise

    for i in xrange(n):
        liposome = lip_class(128, 128, prob_deviation=0.5)
        liposome.make()
        img_name = '{}.png'.format(i + 1)
        img_path = os.path.join(out_dir, img_name)
        print('\rSaving {}'.format(img_path), end='')
        mpimg.imsave(img_path, liposome.data, cmap='Greys_r', vmin=0, vmax=1)
项目:Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks    作者:xtarx    | 项目源码 | 文件源码
def convert_pgm_to_png():
    images = []
    for i, row in normal.iterrows():
        images.append(read_pgm('./mias/pgm/' + row['reference_number'] + '.pgm'))

    j = 0;
    for i, row in normal.iterrows():
        images[j].setflags(write=1)
        if (int(row['reference_number'][-3:]) % 2 == 0):
            images[j][:324, 700:1024] = np.zeros((324, 324))
        else:
            images[j][:324, :324] = np.zeros((324, 324))
            matlabimg.imsave('./mias/png/' + row['reference_number'] + '.png', images[j], vmin=0, vmax=255, cmap='gray')
        j += 1
项目:Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks    作者:xtarx    | 项目源码 | 文件源码
def convert_pgm_to_png_anomalous():
    images = []
    for i, row in abnormal.iterrows():
        images.append(read_pgm('./mias/pgm/' + row['reference_number'] + '.pgm'))

    j = 0;
    for i, row in abnormal.iterrows():
        images[j].setflags(write=1)
        if (int(row['reference_number'][-3:]) % 2 == 0):
            images[j][:324, 700:1024] = np.zeros((324, 324))
        else:
            images[j][:324, :324] = np.zeros((324, 324))
            matlabimg.imsave('./mias/png_anomalous/' + row['reference_number'] + '.png', images[j], vmin=0, vmax=255, cmap='gray')
        j += 1
项目:Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks    作者:xtarx    | 项目源码 | 文件源码
def generate_patches(input_image):
    # print("in generate patchhes")
    global global_counter
    input_image = crop_center(input_image, 384, 384)
    patches = image.extract_patches_2d(input_image, patch_size, max_patches=50,
                                       random_state=rng)
    for counter, i in enumerate(patches):

        if np.any(i):
            matlabimg.imsave('./data/mias_anomalous/' + str(global_counter) + '.png', i, cmap='gray')
            global_counter += 1

#
# convert_pgm_to_png_anomalous()
项目:SelfDrivingCar    作者:aguijarro    | 项目源码 | 文件源码
def ColorSelector():
    # Read in the image and print out some stats
    image = (mpimg.imread('test.png') * 255).astype('uint8')
    print('This image is: ', type(image),
          'with dimensions:', image.shape)

    # Grab the x and y size and make a copy of the image
    ysize = image.shape[0]
    xsize = image.shape[1]
    color_select = np.copy(image)

    # Define color selection criteria
    # MODIFY THESE VARIABLES TO MAKE YOUR COLOR SELECTION
    red_threshold = 200
    green_threshold = 200
    blue_threshold = 200

    rgb_threshold = [red_threshold, green_threshold, blue_threshold]
    print('Esta es la variable rgb_threshold: ', rgb_threshold)

    # Do a bitwise or with the "|" character to identify
    # pixels below the thresholds
    thresholds = (image[:, :, 0] < rgb_threshold[0]) \
                  | (image[:, :, 1] < rgb_threshold[1]) \
                  | (image[:, :, 2] < rgb_threshold[2])

    print('Esta es la variable thresholds: ', thresholds)

    color_select[thresholds] = [0, 0, 0]
    # plt.imshow(color_select)

    # Uncomment the following code if you are running the code
    # locally and wish to save the image
    mpimg.imsave("test-after.png", color_select)

    # Display the image
    plt.imshow(color_select)
    plt.show()
项目:DNGPU    作者:LUMII-Syslab    | 项目源码 | 文件源码
def showPicture(test_length, path):
    if not os.path.exists(path):
        os.makedirs(path)

    data_gen.init_data(task, test_length, 1, n_input)
    while len(data_gen.train_set[task][test_length])==0:
        test_length += 1
        data_gen.init_data(task, test_length, 1, n_input)
    data_gen.resetCounters()

    with tf.Graph().as_default(),tf.device('/cpu:0'):
        tester = DNGPU(n_hidden, [test_length], n_input, [1], n_output, dropout_keep_prob)
        tester.createTestGraph(test_length)
        saver = tf.train.Saver(tf.trainable_variables())

        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            saver.restore(sess, model_file)
            if not os.path.exists(path): os.makedirs(path)

            batch_xs, batch_ys = genTestData(test_length, 1)
            print(batch_xs, batch_ys)
            mem = tester.getAllMem(sess, batch_xs, batch_ys)
            mem = np.squeeze(mem, 1)

            width = mem.shape[1]
            height = mem.shape[0]
            for unit in range(n_hidden):
                img=np.zeros((height,width),dtype=np.float32)
                for x in range(width):
                    for y in range(height):
                        img[y,x]=mem[y, x,unit]

                mpimg.imsave(path+"/frame"+str(unit)+".png",img, cmap='gray')

#Perform training
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def saveVideo(I, IDims, filename, FrameRate = 30, YCbCr = False, Normalize = False):
    #Overwrite by default
    if os.path.exists(filename):
        os.remove(filename)
    N = I.shape[0]
    if YCbCr:
        for i in range(N):
            frame = np.reshape(I[i, :], IDims)
            I[i, :] = ntsc2rgb(frame).flatten()
    if Normalize:
        I = I-np.min(I)
        I = I/np.max(I)
    for i in range(N):
        frame = np.reshape(I[i, :], IDims)
        frame[frame < 0] = 0
        frame[frame > 1] = 1
        mpimage.imsave("%s%i.png"%(TEMP_STR, i+1), frame)
    if os.path.exists(filename):
        os.remove(filename)
    #Convert to video using avconv
    command = [AVCONV_BIN,
                '-r', "%i"%FrameRate,
                '-i', TEMP_STR + '%d.png',
                '-r', "%i"%FrameRate,
                '-b', '30000k',
                filename]
    subprocess.call(command)
    #Clean up
    for i in range(N):
        os.remove("%s%i.png"%(TEMP_STR, i+1))


#############################################################
####        SLIDING WINDOW VIDEO TOOLS, GENERAL         #####
#############################################################
项目:Math412S2017    作者:ctralie    | 项目源码 | 文件源码
def saveVideo(I, IDims, filename, FrameRate = 30, YCbCr = False, Normalize = False):
    #Overwrite by default
    if os.path.exists(filename):
        os.remove(filename)
    N = I.shape[0]
    if YCbCr:
        for i in range(N):
            frame = np.reshape(I[i, :], IDims)
            I[i, :] = ntsc2rgb(frame).flatten()
    if Normalize:
        I = I-np.min(I)
        I = I/np.max(I)
    for i in range(N):
        frame = np.reshape(I[i, :], IDims)
        frame[frame < 0] = 0
        frame[frame > 1] = 1
        mpimage.imsave("%s%i.png"%(TEMP_STR, i+1), frame)
    if os.path.exists(filename):
        os.remove(filename)
    #Convert to video using avconv
    command = [AVCONV_BIN,
                '-r', "%i"%FrameRate,
                '-i', TEMP_STR + '%d.png',
                '-r', "%i"%FrameRate,
                '-b', '30000k',
                filename]
    subprocess.call(command)
    #Clean up
    for i in range(N):
        os.remove("%s%i.png"%(TEMP_STR, i+1))


#############################################################
####        SLIDING WINDOW VIDEO TOOLS, GENERAL         #####
#############################################################
项目:pyglitch    作者:giofusco    | 项目源码 | 文件源码
def save_image(I, filename):
    """save image to file
        :param I: image to save
        :param filename: filename where the image will be saved
    """
    mpimg.imsave(filename, I)
项目:SDcarsLaneDetection    作者:Nazanin1369    | 项目源码 | 文件源码
def displayAndSaveImage(img, path):
    plt.imshow(img)
    mpimg.imsave(path, img)
项目:SDcarsLaneDetection    作者:Nazanin1369    | 项目源码 | 文件源码
def saveImageWithCmap(img, path, cmap):
    mpimg.imsave(path, img, cmap=cmap)
项目:statestream    作者:VolkerFischer    | 项目源码 | 文件源码
def writeout(self):
        """Method to save stored data to images.
        """
        for i,I in self.items.items():
            current_frame = (self.current_frame - I['offset']) % (I['offset'] + 1)
            savefile = self.save_path + os.sep + i + os.sep + str(self.current_frame).rjust(8, '0') + '.png'
            item_shape = self.net['neuron_pools'][i]['shape']
            if item_shape[0] == 1:
                dat = self.store_data[i][current_frame][0,:,:]
            elif item_shape[0] == 2:
                dat = None
            elif item_shape[0] == 3:
                dat = np.swapaxes(self.store_data[i][current_frame], 0, 2)
            Image.imsave(savefile, dat)
项目:StyleTransfer    作者:frendyxzc    | 项目源码 | 文件源码
def save_image(self, tensor, name='default.jpg'):
        image = tensor.clone().cpu()
        image = image.view(3, image_size, image_size)
        image = self.un_loader(image)
        print(image)
        try:
            im = Image.fromarray(image)
            im.save(name)
            print('image saved.')
        except Exception as e:
            print(e)
            mimage.imsave(name, image)
            print('image saved.')
项目:wsics    作者:joneww    | 项目源码 | 文件源码
def save_hsd_img(hsd,name):
    path = cfg.config_path()
    outs_path = os.path.join(path.top_dir,path.hsd_dir,name)
    img_dat = hsd_t.hsd2rgb(hsd)
    mpimg.imsave(outs_path,img_dat)

    return  0
项目:ml_defense    作者:arjunbhagoji    | 项目源码 | 文件源码
def save_svm_images(model_dict, data_dict, X_test, adv_x, dev_mag, rd=None,
                    dr_alg=None, rev=None):
    """
    Save <no_of_img> adv. samples as image files in visual_data folder
    """

    no_of_img = 1    # Number of images to save
    indices = range(no_of_img)

    dataset = model_dict['dataset']
    DR = model_dict['dim_red']
    channels = model_dict['channels']
    abs_path_v = resolve_path_v(model_dict)

    no_of_features = data_dict['no_of_features']
    height = data_dict['height']
    width = data_dict['width']

    for i in indices:
        if channels == 1:
            adv = adv_x[i].reshape((height, width))
            orig = X_test[i].reshape((height, width))
            cmap = 'gray'
        else:
            adv = adv_x[i].reshape((channels, height, width))
            adv = adv.swapaxes(0, 2).swapaxes(0, 1)
            orig = X_test[i].reshape((channels, height, width))
            orig = orig.swapaxes(0, 2).swapaxes(0, 1)
            cmap = None

        fname = abs_path_v
        if (rd is not None) and (rev is None):
            fname += '{}_{}_{}'.format(i, DR, rd)
        elif rd is not None:
            fname += '{}_{}_rev_{}'.format(i, DR, rd)
        elif rd is None:
            fname += '{}'.format(i)

        img.imsave(fname + '_mag{}.png'.format(dev_mag), adv, vmin=0, vmax=1,
                   cmap=cmap)
        img.imsave(fname + '_orig.png', orig, vmin=0, vmax=1, cmap=cmap)
#------------------------------------------------------------------------------#