Python matplotlib.mlab 模块,bivariate_normal() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用matplotlib.mlab.bivariate_normal()

项目:cupy    作者:cupy    | 项目源码 | 文件源码
def draw(X, pred, means, covariances, output):
    xp = cupy.get_array_module(X)
    for i in six.moves.range(2):
        labels = X[pred == i]
        if xp is cupy:
            labels = labels.get()
        plt.scatter(labels[:, 0], labels[:, 1], c=np.random.rand(3))
    if xp is cupy:
        means = means.get()
        covariances = covariances.get()
    plt.scatter(means[:, 0], means[:, 1], s=120, marker='s', facecolors='y',
                edgecolors='k')
    x = np.linspace(-5, 5, 1000)
    y = np.linspace(-5, 5, 1000)
    X, Y = np.meshgrid(x, y)
    for i in six.moves.range(2):
        Z = mlab.bivariate_normal(X, Y, np.sqrt(covariances[i][0]),
                                  np.sqrt(covariances[i][1]),
                                  means[i][0], means[i][1])
        plt.contour(X, Y, Z)
    plt.savefig(output)
项目:Music-Classification-MedleyDB    作者:DeepeshAgarawal    | 项目源码 | 文件源码
def plot_model(model, data):
    """

    :param model: the GMM model
    :param data: the data set 2D
    :return:
    """
    delta = 0.025
    x = np.arange(0.0, 4, delta)
    y = np.arange(0.0, 4, delta)
    X, Y = np.meshgrid(x, y)
    z = np.zeros((np.size(x), np.size(y)))
    # sum of Gaussian
    plt.figure()
    for i in range(np.size(model)):
        ztemp = mlab.bivariate_normal(X, Y, np.sqrt(model['cov'][i][0, 0]), np.sqrt(model['cov'][i][1, 1]), model['mu'][i][0], model['mu'][i][1], model['cov'][i][0,1])
        plt.contour(X, Y, model['w'][i]*ztemp)
        z = np.add(z, ztemp)
    plt.scatter(data[0, :], data[1, :], s=5)
    plt.figure()
    plt.contour(X, Y, z*np.size(model))
    plt.scatter(data[0, :], data[1, :], s=5)
项目:driveboardapp    作者:nortd    | 项目源码 | 文件源码
def main():
    # Part of the example at 
    # http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/contour_demo.py
    delta = 0.025
    x = numpy.arange(-3.0, 3.0, delta)
    y = numpy.arange(-2.0, 2.0, delta)
    X, Y = numpy.meshgrid(x, y)
    Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
    Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
    Z = 10.0 * (Z2 - Z1)
    pyplot.figure()
    CS = pyplot.contour(X, Y, Z)
    pyplot.show()
项目:QuantEcon.lectures.code    作者:QuantEcon    | 项目源码 | 文件源码
def gen_gaussian_plot_vals(?, C):
    "Z values for plotting the bivariate Gaussian N(?, C)"
    m_x, m_y = float(?[0]), float(?[1])
    s_x, s_y = np.sqrt(C[0, 0]), np.sqrt(C[1, 1])
    s_xy = C[0, 1]
    return bivariate_normal(X, Y, s_x, s_y, m_x, m_y, s_xy)
项目:mac-package-build    作者:persepolisdm    | 项目源码 | 文件源码
def main():
    # Part of the example at 
    # http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/contour_demo.py
    delta = 0.025
    x = numpy.arange(-3.0, 3.0, delta)
    y = numpy.arange(-2.0, 2.0, delta)
    X, Y = numpy.meshgrid(x, y)
    Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
    Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
    Z = 10.0 * (Z2 - Z1)
    pyplot.figure()
    CS = pyplot.contour(X, Y, Z)
    pyplot.show()
项目:SLAM-Robot_Simu    作者:takuyani    | 项目源码 | 文件源码
def __likelihood(self, px_est, pw, z_l):
        '''?????
        ???
            px_est?????????????x(k+1)
            pw??????????
            z_l??????????????LandMark
        ????
            pw_update??????????????
        '''
        sigma_xx = np.sqrt(self.__R[0][0])
        sigma_yy = np.sqrt(self.__R[1][1])
        sigma_xy = np.sqrt(self.__R[0][1])

        # ?????
        bn = np.zeros(self.__NP)
        for i in range(self.__NP):
            px = np.array([px_est[:, i]]).T
            pz_l = tf.world2robot(px, self.__LM)
            diff_pz = pz_l - z_l
            dx = diff_pz[:, 0]
            dy = diff_pz[:, 1]
            bnlm = mlab.bivariate_normal(dx, dy, sigma_xx, sigma_yy, 0.0, 0.0, sigma_xy)
            bn[i] = bnlm.prod()

        pw_update = pw * bn
        # ??????
        pw_update = self.__normalize(pw_update)

        return pw_update
项目:Music-Classification-MedleyDB    作者:DeepeshAgarawal    | 项目源码 | 文件源码
def plot_model(model, data):
    """

    :param model: the GMM model
    :param data: the data set 2D
    :return:
    """
    delta = 0.025
    x = np.arange(0.0, 4, delta)
    y = np.arange(0.0, 4, delta)
    X, Y = np.meshgrid(x, y)
    z = np.zeros((np.size(x), np.size(y)))
    # sum of Gaussian
    plt.figure()
    for i in range(np.size(model)):
        ztemp = mlab.bivariate_normal(X, Y, np.sqrt(model['cov'][i][0, 0]), np.sqrt(model['cov'][i][1, 1]), model['mu'][i][0], model['mu'][i][1], model['cov'][i][0,1])
        plt.contour(X, Y, model['w'][i]*ztemp)
        z = np.add(z, ztemp)
    plt.scatter(data[0, :], data[1, :], s=5)
    plt.figure()
    plt.contour(X, Y, z)
    plt.scatter(data[0, :], data[1, :], s=5)