Python matplotlib.mlab 模块,csv2rec() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用matplotlib.mlab.csv2rec()

项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _load_spike_times(self, fetfilename):
        """Reads and returns the spike times and features"""
        f = file(fetfilename, 'r')

        # Number of clustering features is integer on first line
        nbFeatures = int(f.readline().strip())

        # Each subsequent line consists of nbFeatures values, followed by
        # the spike time in samples.
        names = ['fet%d' % n for n in xrange(nbFeatures)]
        names.append('spike_time')

        # Load into recarray
        data = mlab.csv2rec(f, names=names, skiprows=1, delimiter=' ')
        f.close()

        # get features
        features = np.array([data['fet%d' % n] for n in xrange(nbFeatures)])

        # Return the spike_time column
        return data['spike_time'], features.transpose()
项目:introspective    作者:numeristical    | 项目源码 | 文件源码
def test_transform_data():
    """
    Testing the transformation of the data from raw data to functions
    used for fitting a function.

    """
    # We start with actual data. We test here just that reading the data in
    # different ways ultimately generates the same arrays.
    from matplotlib import mlab
    ortho = mlab.csv2rec(op.join(data_path, 'ortho.csv'))
    x1, y1, n1 = mli.transform_data(ortho)
    x2, y2, n2 = mli.transform_data(op.join(data_path, 'ortho.csv'))
    npt.assert_equal(x1, x2)
    npt.assert_equal(y1, y2)
    # We can also be a bit more critical, by testing with data that we
    # generate, and should produce a particular answer:
    my_data = pd.DataFrame(
        np.array([[0.1, 2], [0.1, 1], [0.2, 2], [0.2, 2], [0.3, 1],
                  [0.3, 1]]),
        columns=['contrast1', 'answer'])
    my_x, my_y, my_n = mli.transform_data(my_data)
    npt.assert_equal(my_x, np.array([0.1, 0.2, 0.3]))
    npt.assert_equal(my_y, np.array([0.5, 0, 1.0]))
    npt.assert_equal(my_n, np.array([2, 2, 2]))
项目:lquant    作者:squall1988    | 项目源码 | 文件源码
def insert_data(parameter):
    db = MySQLUtils(user='root', passwd='1988', dbname='stock', source='stock')
    # print parameter
    for stock in parameter:
        data = mlab.csv2rec(stock, delimiter='\t')

        pattern = re.compile("[SH]*[SZ]*[0-9]{6}", re.IGNORECASE)
        m = pattern.findall(stock)
        if len(m) == 1:
        # print data
            db.insert_ohlc_data(data, m[0])
项目:tensorflow-stock-prediction    作者:weitingforyou    | 项目源码 | 文件源码
def get_stock(ticker, startdate, enddate):
    fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)
    # a numpy record array with fields: date, open, high, low, close, volume, adj_close)
    r = mlab.csv2rec(fh)
    fh.close()
    r.sort()
    print 'the length of data:', len(r.close)
    get_stock_data = []
    for i in xrange(0, len(r.close)-1):
        if (r.volume[i] != 0):
            get_stock_data.append(r.close[i].tolist())
    print 'after removing the datas with zero volume, the length of data:', len(get_stock_data)
    return get_stock_data
项目:tensorflow-stock-prediction    作者:weitingforyou    | 项目源码 | 文件源码
def get_stock(ticker, startdate, enddate):
    fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)
    # a numpy record array with fields: (date, open, high, low, close, volume, adj_close)
    r = mlab.csv2rec(fh)
    fh.close()
    r.sort()
    print 'the length of data:', len(r.close)
    get_stock_data = []
    for i in xrange(0, len(r.close)-1):
        if (r.volume[i] != 0):
            get_stock_data.append(r.close[i].tolist())
    print 'after removing the datas with zero volume, the length of data:', len(get_stock_data)
    return get_stock_data
项目:tensorflow-stock-prediction    作者:weitingforyou    | 项目源码 | 文件源码
def get_stock(ticker, startdate, enddate):
    fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)
    # a numpy record array with fields: (date, open, high, low, close, volume, adj_close)
    r = mlab.csv2rec(fh)
    fh.close()
    r.sort()
    print 'the length of data:', len(r.close)
    get_stock_data = []
    for i in xrange(0, len(r.close)-1):
        if (r.volume[i] != 0):
            get_stock_data.append(r.close[i].tolist())
    print 'after removing the datas with zero volume, the length of data:', len(get_stock_data)
    return get_stock_data
项目:Python-Data-Analytics-and-Visualization    作者:PacktPublishing    | 项目源码 | 文件源码
def plotSingleTickerWithVolume(ticker, startdate, enddate):

    global ax

    fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)

    # a numpy record array with fields: 
    #     date, open, high, low, close, volume, adj_close
    r = mlab.csv2rec(fh); 
    fh.close()
    r.sort()

    plt.rc('axes', grid=True)
    plt.rc('grid', color='0.78', linestyle='-', linewidth=0.5)

    axt = ax.twinx()
    prices = r.adj_close

    fcolor = 'darkgoldenrod'

    ax.plot(r.date, prices, color=r'#1066ee', lw=2, label=ticker)
    ax.fill_between(r.date, prices, 0, prices, facecolor='#BBD7E5')
    ax.set_ylim(0.5*prices.max())

    ax.legend(loc='upper right', shadow=True, fancybox=True)

    volume = (r.close*r.volume)/1e6  # dollar volume in millions
    vmax = volume.max()

    axt.fill_between(r.date, volume, 0, label='Volume', 
                 facecolor=fcolor, edgecolor=fcolor)

    axt.set_ylim(0, 5*vmax)
    axt.set_yticks([])

    for axis in ax, axt:  
        for label in axis.get_xticklabels():
            label.set_rotation(30)
            label.set_horizontalalignment('right')

        axis.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')
项目:Python-Data-Analytics-and-Visualization    作者:PacktPublishing    | 项目源码 | 文件源码
def plotTicker(ticker, startdate, enddate, fillcolor):
  """
     matplotlib.finance has fetch_historical_yahoo() which fetches 
     stock price data the url where it gets the data from is 
     http://ichart.yahoo.com/table.csv stores in a numpy record 
     array with fields: 
      date, open, high, low, close, volume, adj_close
  """

  fh = finance.fetch_historical_yahoo(ticker, startdate, enddate) 
  r = mlab.csv2rec(fh); 
  fh.close()
  r.sort()

  ### plot the relative strength indicator
  prices = r.adj_close

  ### plot the price and volume data

  ax.plot(r.date, prices, color=fillcolor, lw=2, label=ticker)
  ax.legend(loc='top right', shadow=True, fancybox=True)

  # set the labels rotation and alignment 
  for label in ax.get_xticklabels():
    # To display date label slanting at 30 degrees
    label.set_rotation(30)
    label.set_horizontalalignment('right')

  ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')

#plot the tickers now
项目:Python-Data-Analytics-and-Visualization    作者:PacktPublishing    | 项目源码 | 文件源码
def plotTicker(ticker, startdate, enddate, fillcolor):
  """
     matplotlib.finance has fetch_historical_yahoo() which fetches 
     stock price data the url where it gets the data from is 
     http://ichart.yahoo.com/table.csv stores in a numpy record 
     array with fields: 
      date, open, high, low, close, volume, adj_close
  """

  fh = finance.fetch_historical_yahoo(ticker, startdate, enddate) 
  r = mlab.csv2rec(fh); 
  fh.close()
  r.sort()

  ### plot the relative strength indicator
  prices = r.adj_close

  ### plot the price and volume data

  ax.plot(r.date, prices, color=fillcolor, lw=2, label=ticker)
  ax.legend(loc='top right', shadow=True, fancybox=True)

  # set the labels rotation and alignment 
  for label in ax.get_xticklabels():
    # To display date label slanting at 30 degrees
    label.set_rotation(30)
    label.set_horizontalalignment('right')

  ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')

#plot the tickers now
项目:Python-Data-Analytics-and-Visualization    作者:PacktPublishing    | 项目源码 | 文件源码
def plotSingleTickerWithVolume(ticker, startdate, enddate):

    global ax

    fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)

    # a numpy record array with fields: 
    #     date, open, high, low, close, volume, adj_close
    r = mlab.csv2rec(fh); 
    fh.close()
    r.sort()

    plt.rc('axes', grid=True)
    plt.rc('grid', color='0.78', linestyle='-', linewidth=0.5)

    axt = ax.twinx()
    prices = r.adj_close

    fcolor = 'darkgoldenrod'

    ax.plot(r.date, prices, color=r'#1066ee', lw=2, label=ticker)
    ax.fill_between(r.date, prices, 0, prices, facecolor='#BBD7E5')
    ax.set_ylim(0.5*prices.max())

    ax.legend(loc='upper right', shadow=True, fancybox=True)

    volume = (r.close*r.volume)/1e6  # dollar volume in millions
    vmax = volume.max()

    axt.fill_between(r.date, volume, 0, label='Volume', 
                 facecolor=fcolor, edgecolor=fcolor)

    axt.set_ylim(0, 5*vmax)
    axt.set_yticks([])

    for axis in ax, axt:  
        for label in axis.get_xticklabels():
            label.set_rotation(30)
            label.set_horizontalalignment('right')

        axis.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def _load_spike_times(self, fetfilename):
        """Reads and returns the spike times and features"""
        f = file(fetfilename, 'r')

        # Number of clustering features is integer on first line
        nbFeatures = int(f.readline().strip())

        # Each subsequent line consists of nbFeatures values, followed by
        # the spike time in samples.
        names = ['fet%d' % n for n in xrange(nbFeatures)]
        names.append('spike_time')

        # Load into recarray
        data = mlab.csv2rec(f, names=names, skiprows=1, delimiter=' ')
        f.close()

        # get features
        features = np.array([data['fet%d' % n] for n in xrange(nbFeatures)])

        # Return the spike_time column
        return data['spike_time'], features.transpose()