Python matplotlib.pylab 模块,show() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pylab.show()

项目:trajectory_tracking    作者:lmiguelvargasf    | 项目源码 | 文件源码
def plot_trajectory(name):
    STEPS = 600
    DELTA = 1 if name != 'linear' else 0.1
    trajectory = create_trajectory(name, STEPS)

    x = [trajectory.get_position_at(i * DELTA).x for i in range(STEPS)]
    y = [trajectory.get_position_at(i * DELTA).y for i in range(STEPS)]

    trajectory_fig, trajectory_plot = plt.subplots(1, 1)
    trajectory_plot.plot(x, y, label='trajectory', lw=3)
    trajectory_plot.set_title(name.title() + ' Trajectory', fontsize=20)
    trajectory_plot.set_xlabel(r'$x{\rm[m]}$', fontsize=18)
    trajectory_plot.set_ylabel(r'$y{\rm[m]}$', fontsize=18)
    trajectory_plot.legend(loc=0)
    trajectory_plot.grid()
    plt.show()
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def compare_images(path = '.'):
     S_limit = 10.
     file_list = glob.glob(os.path.join(path, 'Abu*'))
     file_list_master = glob.glob(os.path.join(path, 'MasterAbu*'))
     file_list.sort()
     file_list_master.sort()
     S=[]
     print("Identifying images with rmq > "+'%3.1f'%S_limit)
     ierr_count = 0
     for i in range(len(file_list)):
         this_S,fimg1,fimg2 = compare_entropy(file_list[i],file_list_master[i])
         if this_S > S_limit:
              warnings.warn(file_list[i]+" and "+file_list_master[i]+" differ by "+'%6.3f'%this_S)
              ierr_count += 1
              S.append(this_S)
     if ierr_count > 0:
          print("Error: at least one image differs by more than S_limit")
          sys.exit(1)
     #print ("S: ",S)
     #plb.plot(S,'o')
     #plb.xlabel("image number")
     #plb.ylabel("modified log KL-divergence to previous image")
     #plb.show()
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def postaud(x, fmax, fbtype=None):
    if fbtype is None:
        fbtype = 'bark'
    nbands = x.shape[0]
    nframes = x.shape[1]
    nfpts = nbands
    if fbtype == 'bark':
        bancfhz = bark2freq(np.linspace(0, freq2bark(fmax), nfpts))
    fsq = bancfhz * bancfhz
    ftmp = fsq + 1.6e5
    eql = ((fsq/ftmp)**2) * ((fsq + 1.44e6)/(fsq + 9.61e6))
    '''
    plt.figure()
    plt.plot(eql)
    plt.show()
    '''
    eql = eql.reshape(np.size(eql), 1)
    z = np.repeat(eql, nframes, axis=1) * x
    z = z ** (1./3.)
    y = np.vstack((z[1, :], z[1:nbands-1, :], z[nbands-2, :]))
    return y
项目:TSS_detection    作者:ueser    | 项目源码 | 文件源码
def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh):
    fig=pl.figure()
    ## To plot and save
    pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5);
    pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red');
    pl.hlines(-np.log10(0.05),min(logFC),max(logFC))
    pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.xlim(-3,3)
    pl.xlabel('Log Fold Change')
    pl.ylabel('-log10(p-value)')
    pl.savefig(saveName)
    pl.close(fig)


# def plot_histograms(df_peaks,pntr_list):
#
#     for pntr in pntr_list:
#         colName =pntr[2]+'_Intragenic_position'
#         pl.hist(df_peaks[colName])
#         pl.xlabel(colName)
#         pl.ylabel()
#         pl.show()
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def plot(l, x1, x2, y, e):
    # Plot
    time_range = numpy.arange(0, l)
    pl.figure(1)
    pl.subplot(221)
    pl.plot(time_range, x1)
    pl.title("Input signal")
    pl.subplot(222)
    pl.plot(time_range, x2, c="r")
    pl.plot(time_range, y, c="b")
    pl.title("Reference signal")
    pl.subplot(223)
    pl.plot(time_range, e, c="r")
    pl.title("Noise")
    pl.xlabel("time")
    pl.show()
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def make_fft_graph(fft, corre):
    fft_np = numpy.array(fft).swapaxes(0, 1).swapaxes(1, 2)
    channel_N, freq_N, sample_N = fft_np.shape
    if (channel_N > 6):  # We don't have space for more than 6 channels
        return
    fig, axes = plt.subplots(2, 3)
    fig.subplots_adjust(hspace=0.3, wspace=0.05)
    for ax, mat, i in zip(axes.flat, fft_np, range(1, channel_N + 1)):
        fft_abs = numpy.abs(mat)
        fft_less_row = fft_abs[0::20]
        n = freq_N / 20
        fft_sqr = numpy.repeat(fft_less_row, int(n / sample_N)).reshape([n, n])
        ax.matshow(fft_sqr, cmap='viridis')
        plt.xlabel('time')
        plt.ylabel('freq')
        ax.set_title('Channel {0}'.format(i))
    plt.show()
    print("Plotted.")
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_aep_two_layers():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alpha = 1 # other alpha is not valid here
    M = 20
    model = aep.SDGPR(Xtrain, ytrain, M, hidden_sizes=[2])
    model.optimise(method='L-BFGS-B', alpha=1, maxiter=5000, disp=False)
    my, vy = model.predict_y(Xtest)
    my = np.reshape(my, ytest.shape)
    vy = np.reshape(vy, ytest.shape)
    rmse = np.sqrt(np.mean((my - ytest)**2))
    ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
    nlml, _ = model.objective_function(model.get_hypers(), Xtrain.shape[0], alpha)
    print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
    # plot(model, Xtrain, ytrain)
    # plt.show()

    # should produce something like this
    # alpha=1.000, train ml=-51.385404, test rmse=0.168, ll=0.311
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_aep_two_layers_stoc():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alpha = 1 # other alpha is not valid here
    M = 20
    model = aep.SDGPR(Xtrain, ytrain, M, hidden_sizes=[2])
    model.optimise(method='adam', alpha=1, maxiter=5000, disp=False)
    my, vy = model.predict_y(Xtest)
    my = np.reshape(my, ytest.shape)
    vy = np.reshape(vy, ytest.shape)
    rmse = np.sqrt(np.mean((my - ytest)**2))
    ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
    nlml, _ = model.objective_function(model.get_hypers(), Xtrain.shape[0], alpha)
    print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
    # plot(model, Xtrain, ytrain)
    # plt.show()

    # should produce something like this
    # alpha=1.000, train ml=-69.444086, test rmse=0.170, ll=0.318
项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码
def plot(param, show = 1):

    """Returns the plot of spectrum as a pyplot object or plot it on the screen
    Keyword arguments:

    param -- Output spectrum file
    show  -- Optional, plot the spectrum on the screen. Enabled by default. 
    """

    s = sed.SED()
    s.grmonty(param)
    plt = pylab.plot(s.lognu, s.ll)
    if show == 1:
        pylab.show()
    else:
        return plt
项目:gcForest    作者:kingfengji    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
项目:classical-machine-learning-algorithm    作者:xwzhong    | 项目源码 | 文件源码
def plotRes(pre, real, test_x,l):
    s = set(pre)
    col = ['r','b','g','y','m']
    fig = plt.figure()

    ax = fig.add_subplot(111)
    for i in range(0, len(s)):
        index1 = pre == i
        index2 = real == i
        x1 = test_x[index1, :]
        x2 = test_x[index2, :]
        ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5)
        ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12)
    plt.title('learning rating='+str(l))
    plt.legend(('c1:predict','c1:true',\
                'c2:predict','c2:true',
                'c3:predict','c3:true',
                'c4:predict','c4:true',
                'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4))
    plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def __init__(self, data, **kwargs):
        # Settings
        self.show_ticks = kwargs.get("show_ticks", False)
        self.show_values = kwargs.get("show_values", False)
        self.show = kwargs.get("show", False)
        self.labels = kwargs.get("labels", None)

        # Setup plot
        self.rows, self.cols = data.shape
        self.fig = plt.figure()
        self.plt_ax = self.fig.add_subplot(111)
        self.cov_ax = self.plt_ax.matshow(np.array(data))

        # Covariance matrix labels
        self.label_values = self._add_data_labels(data)
        self._add_axis_labels(data)

        # Color bar
        self.color_bar = self.fig.colorbar(self.cov_ax)

        # Show plot
        if self.show:
            plt.show(block=False)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_plot_error_ellipse(self):
        # Generate random data
        x = np.random.normal(0, 1, 300)
        s = np.array([2.0, 2.0])
        y1 = np.random.normal(s[0] * x)
        y2 = np.random.normal(s[1] * x)
        data = np.array([y1, y2])

        # Calculate covariance and plot error ellipse
        cov = np.cov(data)
        plot_error_ellipse([0.0, 0.0], cov)

        debug = False
        if debug:
            plt.scatter(data[0, :], data[1, :])
            plt.xlim([-8, 8])
            plt.ylim([-8, 8])
            plt.show()
        plt.clf()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_augment_state(self):
        self.msckf.augment_state()

        N = self.msckf.N()
        self.assertTrue(self.msckf.P_cam is not None)
        self.assertTrue(self.msckf.P_imu_cam is not None)
        self.assertEqual(self.msckf.P_cam.shape, (N * 6, N * 6))
        self.assertEqual(self.msckf.P_imu_cam.shape, (15, N * 6))
        self.assertEqual(self.msckf.N(), 2)

        self.assertTrue(np.array_equal(self.msckf.cam_states[0].q_CG,
                                       self.msckf.ext_q_CI))
        self.assertEqual(self.msckf.counter_frame_id, 2)

        # Plot matrix
        # debug = True
        debug = False
        if debug:
            ax = plt.subplot(111)
            ax.matshow(self.msckf.P())
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_F(self):
        w_hat = np.array([1.0, 2.0, 3.0])
        q_hat = np.array([0.0, 0.0, 0.0, 1.0])
        a_hat = np.array([1.0, 2.0, 3.0])
        w_G = np.array([0.1, 0.1, 0.1])

        F = self.imu_state.F(w_hat, q_hat, a_hat, w_G)

        # -- First row --
        self.assertTrue(np_equal(F[0:3, 0:3], -skew(w_hat)))
        self.assertTrue(np_equal(F[0:3, 3:6], -np.ones((3, 3))))
        # -- Third Row --
        self.assertTrue(np_equal(F[6:9, 0:3], dot(-C(q_hat).T, skew(a_hat))))
        self.assertTrue(np_equal(F[6:9, 6:9], -2.0 * skew(w_G)))
        self.assertTrue(np_equal(F[6:9, 9:12], -C(q_hat).T))
        self.assertTrue(np_equal(F[6:9, 12:15], -skewsq(w_G)))
        # -- Fifth Row --
        self.assertTrue(np_equal(F[12:15, 6:9], np.ones((3, 3))))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(F)
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_G(self):
        q_hat = np.array([0.0, 0.0, 0.0, 1.0]).reshape((4, 1))
        G = self.imu_state.G(q_hat)

        # -- First row --
        self.assertTrue(np_equal(G[0:3, 0:3], -np.ones((3, 3))))
        # -- Second row --
        self.assertTrue(np_equal(G[3:6, 3:6], np.ones((3, 3))))
        # -- Third row --
        self.assertTrue(np_equal(G[6:9, 6:9], -C(q_hat).T))
        # -- Fourth row --
        self.assertTrue(np_equal(G[9:12, 9:12], np.ones((3, 3))))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(G)
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_J(self):
        # Setup
        cam_q_CI = np.array([0.0, 0.0, 0.0, 1.0])
        cam_p_IC = np.array([1.0, 1.0, 1.0])
        q_hat_IG = np.array([0.0, 0.0, 0.0, 1.0])
        N = 1
        J = self.imu_state.J(cam_q_CI, cam_p_IC, q_hat_IG, N)

        # Assert
        C_CI = C(cam_q_CI)
        C_IG = C(q_hat_IG)
        # -- First row --
        self.assertTrue(np_equal(J[0:3, 0:3], C_CI))
        # -- Second row --
        self.assertTrue(np_equal(J[3:6, 0:3], skew(dot(C_IG.T, cam_p_IC))))
        # -- Third row --
        self.assertTrue(np_equal(J[3:6, 12:15], I(3)))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(J)
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_project(self):
        # Load points
        points_file = join(test.TEST_DATA_PATH, "house/house.p3d")
        points = np.loadtxt(points_file).T

        # Setup camera
        K = np.eye(3)
        R = np.eye(3)
        t = np.array([0, 0, 0])
        camera = PinholeCameraModel(320, 240, K)
        x = camera.project(points, R, t)

        # Assert
        self.assertEqual(x.shape, (3, points.shape[1]))
        self.assertTrue(np.all(x[2, :] == 1.0))

        # Plot projection
        debug = False
        # debug = True
        if debug:
            plt.figure()
            plt.plot(x[0], x[1], 'k. ')
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot(self, track, track_cam_states, estimates):
        plt.figure()

        # Feature
        feature = T_global_camera * track.ground_truth
        plt.plot(feature[0], feature[1],
                 marker="o", color="red", label="feature")

        # Camera states
        for cam_state in track_cam_states:
            pos = T_global_camera * cam_state.p_G
            plt.plot(pos[0], pos[1],
                     marker="o", color="blue", label="camera")

        # Estimates
        for i in range(len(estimates)):
            cam_state = track_cam_states[i]
            cam_pos = T_global_camera * cam_state.p_G
            estimate = (T_global_camera * estimates[i]) + cam_pos
            plt.plot(estimate[0], estimate[1],
                     marker="o", color="green")

        plt.legend(loc=0)
        plt.show()
项目:lquant    作者:squall1988    | 项目源码 | 文件源码
def summary(self):
        """
        This function is used to summary the result.
        If you want calculate some other indicator, you can add them here.
        :return:
        """
        if self._analysis is not None:
            self._analysis(self.asset_dict)
        # for x in self.asset_dict:
        #     self.get_benchmark()
        #     asset_return = (self.asset_dict[x] - self._base_fund) / self._base_fund
        #     asset_return = asset_return.add_prefix(str(x) + "_")
        #     print asset_return
        #     result = pd.merge(asset_return, self._benchmark_data,
        #                       left_index=True, right_index=True, how="inner")
        #     max_return = self.get_max_return(x, begin=self._begin_date, end=self._end_date)
        #     print max_return
        #     # print result
        #     # if self._analysis is not None:
        #     #     self._analysis(result)
        #     # result.plot()
        #     # plt.show()
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def x_corr(a,b,center_time_s=1000.0,window_len_s=50.0,plot=True):

      center_index = int(center_time_s/a.dt)
      window_index = int(window_len_s/(a.dt))
      print "center_index is", center_index
      print "window_index is", window_index

      t1 = a.trace_x[(center_index - window_index) : (center_index + window_index)]
      t2 = b.trace_x[(center_index - window_index) : (center_index + window_index)]
      print t1

      time_window = np.linspace((-window_len_s/2.0), (window_len_s/2), len(t1))
      #print time_window

      #plt.plot(time_window, t1)
      #plt.plot(time_window, t2)
      #plt.show()

      x_corr_time = correlate(t1, t2)
      delay = (np.argmax(x_corr_time) - (len(x_corr_time)/2) ) * a.dt
      #print "the delay is ", delay
      return delay
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotLine(self, x_vals, y_vals, x_label, y_label, title, filename=None):
        plt.clf()

        plt.xlabel(x_label)
        plt.xlim(((min(x_vals) - 0.5), (max(x_vals) + 0.5)))
        plt.ylabel(y_label)
        plt.ylim(((min(y_vals) - 0.5), (max(y_vals) + 0.5)))

        plt.title(title)
        plt.plot(x_vals, y_vals, c='k', lw=2)
        #plt.plot(x_vals, len(x_vals) * y_vals[0], c='r', lw=2)

        if filename == None:
            plt.show()
        else:
            plt.savefig(self.outputPath + filename)
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
项目:statistical-learning-methods-note    作者:ysh329    | 项目源码 | 文件源码
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# ??
项目:marketcrush    作者:basaks    | 项目源码 | 文件源码
def backtest(config_file, day_trade):
    cfg = config.Config(config_file)
    cfg.day_trade = day_trade
    dfs = load_data(config_file)
    trender = strategies[cfg.strategy](**cfg.strategy_parameters)
    res = []
    for df in dfs:
        res.append(trender.backtest(data_frame=df))
    final_panel = pd.Panel({os.path.basename(p['path']): df for p, df in
                            zip(cfg.data_path, res)})
    profit_series = final_panel.sum(axis=0)['total_profit'].cumsum()
    final_panel.to_excel(cfg.output_file)

    if cfg.show:
        profit_series.plot()
        plt.xlabel('Time')
        plt.ylabel('Profit')
        plt.legend('Profit')
        plt.show()
项目:geetest    作者:zr777    | 项目源码 | 文件源码
def get_captcha_image(filename):

        screenshot = driver.get_screenshot_as_png()
        screenshot = Image.open(BytesIO(screenshot))
        # screenshot.show()

        captcha_el = driver.find_element_by_class_name("gt_box")
        location = captcha_el.location
        size = captcha_el.size
        left = location['x']
        top = location['y']
        right = location['x'] + size['width']
        bottom = location['y'] + size['height']
        box = (left, top, right, bottom)
        print(box)
        if box[0] == 0:
            raise(Exception('======='))
        captcha_image = screenshot.crop(box)
        captcha_image.save(filename)  # "%s.png" % uuid.uuid4().hex
        print(u'????')
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def show_samples(y, ndim, nb=10, cmap=''):
    if ndim == 4:
        for i in range(nb**2):
            plt.subplot(nb, nb, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    else:
        x = y[0]
        y = y[1]
        plt.figure(0)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(x[i], cmap=cmap, interpolation='none')
            plt.axis('off')

        plt.figure(1)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    plt.show()
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def fit_data():
    data=np.loadtxt('data.dat')
    print(data)
    params = dict()
    params["c"] = {"min" : -np.inf,"max" : np.inf}
    result = qudi_fitting.make_lorentzian_fit(axis=data[:,0], data=data[:,3], add_parameters=params)
    print(result.fit_report())
    plt.plot(data[:,0],-data[:,3]+2,"b-o",label="data mean")
#    plt.plot(data[:,0],data[:,1],label="data")
#    plt.plot(data[:,0],data[:,2],label="data")
    plt.plot(data[:,0],-result.best_fit+2,"r-",linewidth=2.,label="fit")
#    plt.plot(data[:,0],result.init_fit,label="init")
    plt.xlabel("time (ns)")
    plt.ylabel("polarization transfer (arb. u.)")
    plt.legend(loc=1)
#    plt.savefig("pol20_24repetition_pol.pdf")
#    plt.savefig("pol20_24repetition_pol.png")
    plt.show()
    savedata=[[data[ii,0],-data[ii,3]+2,-result.best_fit[ii]+2] for ii in range(len(data[:,0]))]
    np.savetxt("pol_data_fit.csv",savedata)
#    print(result.params)

    print(result.params)
项目:ml_sampler    作者:facebookincubator    | 项目源码 | 文件源码
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
项目:genrec    作者:kkanellis    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, plot_title, filename, genres=None):
    if not genres:
        genres = GENRES

    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=100.0)

    axes = pylab.axes()
    axes.set_xticks(range(len(genres)))
    axes.set_xticklabels(genres, rotation=45)

    axes.set_yticks(range(len(genres)))
    axes.set_yticklabels(genres)
    axes.xaxis.set_ticks_position("bottom")

    pylab.title(plot_title, fontsize=14)
    pylab.colorbar()
    pylab.xlabel('Predicted class', fontsize=12)
    pylab.ylabel('Correct class', fontsize=12)
    pylab.grid(False)
    #pylab.show()
    pylab.savefig(os.path.join(PLOTS_DIR, "cm_%s.eps" % filename), bbox_inches="tight")
项目:gcforest    作者:w821881341    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def gen_aperture(imgsize,ypos,xpos,radius,pixval=1,showaperture=False,verbose=True):
    """
    Generating an aperture image

    --- INPUT ---
    imgsize       The dimensions of the array to return. Expects [y-size,x-size].
                  The aperture will be positioned in the center of a (+/-x-size/2., +/-y-size/2) sized array
    ypos          Pixel position in the y direction
    xpos          Pixel position in the x direction
    radius        Radius of aperture in pixels
    showaperture  Display image of generated aperture
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    apertureimg  = tu.gen_aperture([20,40],10,5,10,showaperture=True)
    apertureimg  = tu.gen_aperture([2000,4000],900,1700,150,showaperture=True)

    """
    if verbose: print ' - Generating aperture in image (2D array)'
    y , x    = np.ogrid[-ypos:imgsize[0]-ypos, -xpos:imgsize[1]-xpos]
    mask     = x*x + y*y <= radius**2.
    aperture = np.zeros(imgsize)

    if verbose: print ' - Assigning pixel value '+str(pixval)+' to aperture'
    aperture[mask] = pixval

    if showaperture:
        if verbose: print ' - Displaying resulting image of aperture'
        plt.imshow(aperture,interpolation='none')
        plt.title('Generated aperture')
        plt.show()

    return aperture
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def residual_multigauss(param, dataimage, nonfinite = 0.0, ravelresidual=True, showimages=False, verbose=False):
    """
    Calculating the residual bestween the multigaussian model with the paramters 'param' and the data.

    --- INPUT ---
    param         Parameters of multi-gaussian model to generate. See modelimage_multigauss() header for details
    dataimage     Data image to take residual
    nonfinite     Value to replace non-finite entries in residual with
    ravelresidual To np.ravel() the residual image set this to True. Needed by scipy.optimize.leastsq()
                  optimizer function
    showimages    To show model and residiual images set to True
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_model_FoV as tmf
    param      = [18,31,1*0.3,2.1*0.3,1.2*0.3,30*0.3,    110,90,200*0.5,20.1*0.5,15.2*0.5,0*0.5]
    dataimg    = pyfits.open('/Users/kschmidt/work/TDOSE/mock_cube_sourcecat161213_tdose_mock_cube.fits')[0].data[0,:,:]
    residual   = tmf.residual_multigauss(param, dataimg, showimages=True)

    """
    if verbose: ' - Estimating residual (= model - data) between model and data image'
    imgsize      = dataimage.shape
    xgrid, ygrid = tu.gen_gridcomponents(imgsize)
    modelimg     = tmf.modelimage_multigauss((xgrid, ygrid),param,imgsize,showmodelimg=showimages, verbose=verbose)

    residualimg  = modelimg - dataimage

    if showimages:
        plt.imshow(residualimg,interpolation='none', vmin=1e-5, vmax=np.max(residualimg), norm=mpl.colors.LogNorm())
        plt.title('Resdiaul (= model - data) image')
        plt.show()

    if nonfinite is not None:
        residualimg[~np.isfinite(residualimg)] = 0.0

    if ravelresidual:
        residualimg = np.ravel(residualimg)

    return residualimg
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:toll_road    作者:idosekely    | 项目源码 | 文件源码
def plot(ts):
        if not plt:
            print ""
        fig, ax = plt.subplots()
        lined = dict()

        ax.set_title('Click on legend line to toggle line on/off')
        lines = [ax.plot(ts[col], label=col) for col in ts.columns]
        leg = ax.legend(loc='best')

        for legline, origline in zip(leg.get_lines(), lines):
            legline.set_picker(5)  # 5 pts tolerance
            lined[legline] = origline[0]

        def onpick(event):
            # on the pick event, find the orig line corresponding to the
            # legend proxy line, and toggle the visibility
            legline = event.artist
            origline = lined[legline]
            vis = not origline.get_visible()
            origline.set_visible(vis)
            # Change the alpha on the line in the legend so we can see what lines
            # have been toggled
            if vis:
                legline.set_alpha(1.0)
            else:
                legline.set_alpha(0.2)
            fig.canvas.draw()

        fig.canvas.mpl_connect('pick_event', onpick)
        plt.show(False)
项目:DeepLearning    作者:STHSF    | 项目源码 | 文件源码
def plot(embeddings, labels):
    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
    pylab.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = embeddings[i, :]
        pylab.scatter(x, y)
        pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                       ha='right', va='bottom')
    pylab.show()
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True):
    spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False)
    bark_filters = int(np.ceil(freq2bark(sr//2)))
    wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters)
    '''
    plt.figure()
    plt.subplot(211)
    plt.imshow(wts)
    plt.subplot(212)
    plt.hold(True)
    for i in range(18):
        plt.plot(wts[i, :])
    plt.show()
    '''
    bark_spec = np.matmul(wts, spec)
    if do_rasta:
        bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec)
        log_bark_spec = np.log(bark_spec)
        rasta_log_bark_spec = rasta_filt(log_bark_spec)
        bark_spec = np.exp(rasta_log_bark_spec)
    post_spec = postaud(bark_spec, sr/2.)
    if plp_order > 0:
        lpcas = do_lpc(post_spec, plp_order)
        # lpcas = do_lpc(spec, plp_order) # just for test
    else:
        lpcas = post_spec
    return lpcas
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def plot(l, samp, w1, w2, cor):
    time_range = numpy.arange(0, l) * (1.0 / samp)

    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, w1)
    pl.subplot(212)
    pl.plot(time_range, w2, c="r")
    pl.xlabel("time")

    pl.figure(2)
    pl.plot(time_range, cor)
    pl.show()
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[1:3]
    nframes = w1.shape[0]

    # Cut one channel in the tail, while the other in the head,
    # to guarantee same length and first delays second.
    cut_time_len = 0.2  # second
    cut_len = int(cut_time_len * sampling)
    wp1 = w1[:-cut_len]
    wp2 = w2[cut_len:]

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes - cut_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[0:2]
    nframes = w1.shape[0]

    # Pad one channel in the head, while the other in the tail,
    # to guarantee same length.
    pad_time_len = 0.01  # second
    pad_len = int(pad_time_len * sampling)
    pad_arr = numpy.zeros(pad_len)
    wp1 = numpy.concatenate((pad_arr, w1))
    wp2 = numpy.concatenate((w2, pad_arr))

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes + pad_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def plot_channel(audio, sampling):
    channels, nframes = audio.shape[0], audio.shape[1]
    time_range = numpy.arange(0, nframes) * (1.0 / sampling)

    for i in range(1, channels + 1):
        pl.figure(i)
        pl.plot(time_range, audio[i - 1])
        pl.xlabel("time{0}".format(i))

    pl.show()
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def generate_box_plot(dataset, methods, position_rmses, orientation_rmses):

  num_methods = len(methods)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.3 / num_methods
  spacing = 0.3 / num_methods
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('RMSE position [m]', color='b')
  ax1.tick_params('y', colors='b')
  fig.suptitle(
      "Hand-Eye Calibration Method Error {}".format(dataset), fontsize='24')
  bp_position = ax1.boxplot(position_rmses, 0, '',
                            positions=x_ticks - spacing, widths=width)
  plt.setp(bp_position['boxes'], color='blue', linewidth=line_width)
  plt.setp(bp_position['whiskers'], color='blue', linewidth=line_width)
  plt.setp(bp_position['fliers'], color='blue',
           marker='+', linewidth=line_width)
  plt.setp(bp_position['caps'], color='blue', linewidth=line_width)
  plt.setp(bp_position['medians'], color='blue', linewidth=line_width)
  ax2 = ax1.twinx()
  ax2.set_ylabel('RMSE Orientation [$^\circ$]', color='g')
  ax2.tick_params('y', colors='g')
  bp_orientation = ax2.boxplot(
      orientation_rmses, 0, '', positions=x_ticks + spacing, widths=width)
  plt.setp(bp_orientation['boxes'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['whiskers'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['fliers'], color='green',
           marker='+')
  plt.setp(bp_orientation['caps'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['medians'], color='green', linewidth=line_width)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing, x_ticks[-1] + 2.5 * spacing)

  plt.show()
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
  num_methods = len(methods)
  num_datasets = len(datasets)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.6 / num_methods / num_datasets
  spacing = 0.4 / num_methods / num_datasets
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('Time [s]', color='b')
  ax1.tick_params('y', colors='b')
  ax1.set_yscale('log')
  fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
  handles = []
  for i, dataset in enumerate(datasets):
    runtimes = [runtimes_per_method[dataset][method] for method in methods]
    bp = ax1.boxplot(
        runtimes, 0, '',
        positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
                   spacing * 2),
        widths=width)
    plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
    plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
    plt.setp(bp['fliers'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['medians'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
    handles.append(mpatches.Patch(color=colors[i], label=dataset))
  plt.legend(handles=handles, loc=2)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
           x_ticks[-1] + 2.5 * spacing * num_datasets)

  plt.show()
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def plot_angular_velocities(title,
                            angular_velocities,
                            angular_velocities_filtered,
                            block=True):
  fig = plt.figure()

  title_position = 1.05

  fig.suptitle(title, fontsize='24')

  a1 = plt.subplot(1, 2, 1)
  a1.set_title(
      "Angular Velocities Before Filtering \nvx [red], vy [green], vz [blue]",
      y=title_position)
  plt.plot(angular_velocities[:, 0], c='r')
  plt.plot(angular_velocities[:, 1], c='g')
  plt.plot(angular_velocities[:, 2], c='b')

  a2 = plt.subplot(1, 2, 2)
  a2.set_title(
      "Angular Velocities After Filtering \nvx [red], vy [green], vz [blue]", y=title_position)
  plt.plot(angular_velocities_filtered[:, 0], c='r')
  plt.plot(angular_velocities_filtered[:, 1], c='g')
  plt.plot(angular_velocities_filtered[:, 2], c='b')

  plt.subplots_adjust(left=0.025, right=0.975, top=0.8, bottom=0.05)

  if plt.get_backend() == 'TkAgg':
    mng = plt.get_current_fig_manager()
    max_size = mng.window.maxsize()
    max_size = (max_size[0], max_size[1] * 0.45)
    mng.resize(*max_size)
  plt.show(block=block)
项目:DataMining    作者:lidalei    | 项目源码 | 文件源码
def plot_distortion(training_data_instances):
    # dimension of a training data instance
    d = training_data_instances.shape[1]
    # first m instances considered
    m = 20

    fig, axes = plt.subplots(1, 1)
    fig.suptitle("Distortion of random projection", fontsize = "x-large")

    for k in [50, 100, 500]:
        ## generate random projection matrix
        random_projection_matrix =  generate_random_projection_matrix(k, d)
        ## random projection
        m_instances = training_data_instances[0:m]
        projected_m_instances = np.dot(m_instances, np.transpose(random_projection_matrix))
        # print random_projected_matrix[0], random_projected_matrix.shape
        ## evaluate distortion - line chart
        m_instances_distortions = []
        for i in range(m):
            for j in range(i + 1, m):
                m_instances_distortions.append(euclidean(projected_m_instances[i], projected_m_instances[j]) / euclidean(m_instances[i], m_instances[j]))
        m_instances_distortions = np.array(m_instances_distortions)
        mean, std = np.mean(m_instances_distortions), np.std(m_instances_distortions)
        # line chart
        axes.plot(m_instances_distortions, label = "k=" + str(k))
        axes.plot([0, m_instances_distortions.size], [mean, mean], label = "k=" + str(k) + ", mean = " + str(round(mean, 4)))

        print "k = ", k, "distortion =", mean, "+-", std
    axes.set_xlabel("pairs of instances", fontsize = "large")
    axes.set_ylabel("distortion", fontsize = "large")
    axes.legend(loc = "center right", fontsize = "medium")
    plt.show()
项目:face-landmark    作者:lsy17096535    | 项目源码 | 文件源码
def getGitRepFolder():
#    import subprocess
#    return subprocess.Popen(['git', 'rev-parse', '--show-toplevel'], stdout=subprocess.PIPE).communicate()[0].rstrip()
    return '/home/ly/workspace/Vanilla'
项目:face-landmark    作者:lsy17096535    | 项目源码 | 文件源码
def plot(self):
        from matplotlib.pylab import show, plot, stem
        pass
项目:face-landmark    作者:lsy17096535    | 项目源码 | 文件源码
def show(self, r=3, color=255, other=None, title=None):
        M = self.drawLandmarks(r, color, other, title)
        if title is None:
            title = self.name
        # my debug
        #cv2.imshow(title, M)

        return M
项目:mondrian-kernel    作者:matejbalog    | 项目源码 | 文件源码
def main():
    initialize_plotting()
    experiment_convergence_kernelerror()
    experiment_convergence_testerror()
    plt.show()
项目:ml-projects    作者:saopayne    | 项目源码 | 文件源码
def hackathon_GBC_model(clf, train, features):
    clf.fit(train[features], train["Class"])
    probab_of_predict = clf.predict_proba(train[features])[:,1]
    predict_train = clf.predict(train[features])
    cv_score = cross_val_score(clf, train[features], train["Class"], cv=5, scoring="roc_auc")
    print("----------------------Model performance-----------------------")
    print("Accuracy score: ", accuracy_score(train["Class"].values, predict_train))
    print("AUC: ", roc_auc_score(train["Class"],probab_of_predict) )
    print("CV score: Mean - {}, Max - {}, Min - {}, Std - {}".format(np.mean(cv_score), np.max(cv_score),
                                                                     np.min(cv_score), np.std(cv_score)))

    Relative_Feature_importance = pd.Series(clf.feature_importances_, features).sort_values(ascending=False)
    Relative_Feature_importance.plot(kind='bar', title='Order of Feature Importance')
    plt.ylabel('Feature Importance')
    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_collapsed():
    np.random.seed(42)

    print "create dataset ..."
    Xtrain, ytrain, Xtest, ytest = create_dataset()

    alphas = [0.001, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 1]
    for alpha in alphas:
        M = 20
        model = vfe.SGPR_collapsed(Xtrain, ytrain, M)
        model.optimise(method='L-BFGS-B', alpha=alpha, maxiter=1000, disp=False)
        my, vy = model.predict_y(Xtest, alpha)
        my = np.reshape(my, ytest.shape)
        vy = np.reshape(vy, ytest.shape)
        rmse = np.sqrt(np.mean((my - ytest)**2))
        ll = np.mean(-0.5 * np.log(2 * np.pi * vy) - 0.5 * (ytest - my)**2 / vy)
        nlml, _ = model.objective_function(model.get_hypers(), alpha)
        print 'alpha=%.3f, train ml=%3f, test rmse=%.3f, ll=%.3f' % (alpha, nlml, rmse, ll)
        # plot(model, Xtrain, ytrain)
        # plt.show()

    # should produce something like this
    # alpha=0.001, train ml=-64.573021, test rmse=0.169, ll=0.348
    # alpha=0.100, train ml=-64.616618, test rmse=0.169, ll=0.348
    # alpha=0.200, train ml=-64.626655, test rmse=0.169, ll=0.348
    # alpha=0.300, train ml=-64.644053, test rmse=0.169, ll=0.348
    # alpha=0.500, train ml=-64.756588, test rmse=0.169, ll=0.348
    # alpha=0.700, train ml=-68.755871, test rmse=0.169, ll=0.350
    # alpha=0.800, train ml=-72.153441, test rmse=0.167, ll=0.349
    # alpha=1.000, train ml=-71.305002, test rmse=0.169, ll=0.303