Python matplotlib.pylab 模块,legend() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pylab.legend()

项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def set_nice_params():
    fsize=18

    params = {'axes.labelsize':  fsize,
    #    'font.family':       'serif',
    'font.family':        'Times New Roman',
    'figure.facecolor':  'white',
    'text.fontsize':     fsize,
    'legend.fontsize':   fsize,
    'xtick.labelsize':   fsize*0.8,
    'ytick.labelsize':   fsize*0.8,
    'ytick.minor.pad': 8,
    'ytick.major.pad': 8,
    'xtick.minor.pad': 8,
    'xtick.major.pad': 8,
    'text.usetex':       False,
    'lines.markeredgewidth': 0}
    pl.rcParams.update(params)
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def hrd_key(self, key_str):
        """
        plot an HR diagram

        Parameters
        ----------
        key_str : string
            A label string

        """

        pyl.plot(self.data[:,self.cols['log_Teff']-1],\
                 self.data[:,self.cols['log_L']-1],label = key_str)
        pyl.legend()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        x1,x2=pl.xlim()
        if x2 > x1:
            self._xlimrev()
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_2(self, mod, species, xlim1, xlim2):

        """
        Plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.

        """

        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass,Xspecies,'-',label=str(mod)+', '+species)
        pyl.xlim(xlim1,xlim2)
        pyl.legend()
项目:classical-machine-learning-algorithm    作者:xwzhong    | 项目源码 | 文件源码
def plotRes(pre, real, test_x,l):
    s = set(pre)
    col = ['r','b','g','y','m']
    fig = plt.figure()

    ax = fig.add_subplot(111)
    for i in range(0, len(s)):
        index1 = pre == i
        index2 = real == i
        x1 = test_x[index1, :]
        x2 = test_x[index2, :]
        ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5)
        ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12)
    plt.title('learning rating='+str(l))
    plt.legend(('c1:predict','c1:true',\
                'c2:predict','c2:true',
                'c3:predict','c3:true',
                'c4:predict','c4:true',
                'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4))
    plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_position(self, pos_true, pos_est):
        N = pos_est.shape[1]
        pos_true = pos_true[:, :N]
        pos_est = pos_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Position")

        # Ground truth
        plt.plot(pos_true[0, :], pos_true[1, :],
                 color="red", marker="o", label="Grouth truth")

        # Estimated
        plt.plot(pos_est[0, :], pos_est[1, :],
                 color="blue", marker="o", label="Estimated")

        # Plot labels and legends
        plt.xlabel("East (m)")
        plt.ylabel("North (m)")
        plt.axis("equal")
        plt.legend(loc=0)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot(self, track, track_cam_states, estimates):
        plt.figure()

        # Feature
        feature = T_global_camera * track.ground_truth
        plt.plot(feature[0], feature[1],
                 marker="o", color="red", label="feature")

        # Camera states
        for cam_state in track_cam_states:
            pos = T_global_camera * cam_state.p_G
            plt.plot(pos[0], pos[1],
                     marker="o", color="blue", label="camera")

        # Estimates
        for i in range(len(estimates)):
            cam_state = track_cam_states[i]
            cam_pos = T_global_camera * cam_state.p_G
            estimate = (T_global_camera * estimates[i]) + cam_pos
            plt.plot(estimate[0], estimate[1],
                     marker="o", color="green")

        plt.legend(loc=0)
        plt.show()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins, data):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins):
    data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
项目:statistical-learning-methods-note    作者:ysh329    | 项目源码 | 文件源码
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# ??
项目:marketcrush    作者:basaks    | 项目源码 | 文件源码
def backtest(config_file, day_trade):
    cfg = config.Config(config_file)
    cfg.day_trade = day_trade
    dfs = load_data(config_file)
    trender = strategies[cfg.strategy](**cfg.strategy_parameters)
    res = []
    for df in dfs:
        res.append(trender.backtest(data_frame=df))
    final_panel = pd.Panel({os.path.basename(p['path']): df for p, df in
                            zip(cfg.data_path, res)})
    profit_series = final_panel.sum(axis=0)['total_profit'].cumsum()
    final_panel.to_excel(cfg.output_file)

    if cfg.show:
        profit_series.plot()
        plt.xlabel('Time')
        plt.ylabel('Profit')
        plt.legend('Profit')
        plt.show()
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def fit_data():
    data=np.loadtxt('data.dat')
    print(data)
    params = dict()
    params["c"] = {"min" : -np.inf,"max" : np.inf}
    result = qudi_fitting.make_lorentzian_fit(axis=data[:,0], data=data[:,3], add_parameters=params)
    print(result.fit_report())
    plt.plot(data[:,0],-data[:,3]+2,"b-o",label="data mean")
#    plt.plot(data[:,0],data[:,1],label="data")
#    plt.plot(data[:,0],data[:,2],label="data")
    plt.plot(data[:,0],-result.best_fit+2,"r-",linewidth=2.,label="fit")
#    plt.plot(data[:,0],result.init_fit,label="init")
    plt.xlabel("time (ns)")
    plt.ylabel("polarization transfer (arb. u.)")
    plt.legend(loc=1)
#    plt.savefig("pol20_24repetition_pol.pdf")
#    plt.savefig("pol20_24repetition_pol.png")
    plt.show()
    savedata=[[data[ii,0],-data[ii,3]+2,-result.best_fit[ii]+2] for ii in range(len(data[:,0]))]
    np.savetxt("pol_data_fit.csv",savedata)
#    print(result.params)

    print(result.params)
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_classes(y, cord, names, test_error, message=""):
    plt.close("all")
    cord = np.array(cord)
    colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k')
    un = np.unique(y)
    fig, ax = plt.subplots()
    for u, col in zip(un, colors):
        ind = np.argwhere(y == u)
        x = cord[ind, :]
        x = x.reshape(x.shape[0], cord.shape[1])
        ax.scatter(x[:, 0], x[:, 1], label="class:" + str(u),
                   color=col)

    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    fig.suptitle(
        "Output prediction. Test error:" + str(test_error*100) + "%. " +
        message, fontsize=8)
    return fig
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_penalty_vl(debug, tag, fold_exp):
    plt.close("all")
    vl = np.array(debug["penalty"])
    fig = plt.figure(figsize=(15, 10.8), dpi=300)
    names = debug["names"]
    for i in range(vl.shape[1]):
        if vl.shape[1] > 1:
            plt.plot(vl[:, i], label="layer_"+str(names[i]))
        else:
            plt.plot(vl[:], label="layer_"+str(names[i]))
    plt.xlabel("mini-batchs")
    plt.ylabel("value of penlaty")
    plt.title(
        "Penalty value over layers:" + "_".join([str(k) for k in names]) +
        ". tag:" + tag)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(fold_exp+"/penalty.png", bbox_inches='tight')
    plt.close('all')
    del fig
项目:ml_sampler    作者:facebookincubator    | 项目源码 | 文件源码
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotSpeedupFigure(AllInfo, maxWorker=1, **kwargs):
    pylab.figure(2)
    xs = AllInfo['nWorker']
    ts_mono = AllInfo['t_monolithic']

    xgrid = np.linspace(0, maxWorker + 0.1, 100)
    pylab.plot(xgrid, xgrid, 'y--', label='ideal parallel')

    for method in getMethodNames(**kwargs):
        speedupRatio = ts_mono / AllInfo['t_' + method]
        pylab.plot(xs, speedupRatio, 'o-',
                   label=method,
                   color=ColorMap[method],
                   markeredgecolor=ColorMap[method])

    pylab.xlim([-0.2, maxWorker + 0.5])
    pylab.ylim([0, maxWorker + 0.5])
    pylab.legend(loc='upper left')
    pylab.xlabel('Number of Workers')
    pylab.ylabel('Speedup over Monolithic')
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotBoundVsAlph(alphaVals=np.linspace(.001, 3, 1000),
                    beta1=0.5):
    exactVals = cD_exact(alphaVals, beta1)
    boundVals = cD_bound(alphaVals, beta1)

    assert np.all(exactVals >= boundVals)
    pylab.plot(alphaVals, exactVals, 'k-', linewidth=LINEWIDTH)
    pylab.plot(alphaVals, boundVals, 'r--', linewidth=LINEWIDTH)
    pylab.xlabel("alpha", fontsize=FONTSIZE)
    pylab.ylabel("  ", fontsize=FONTSIZE)
    pylab.xlim([np.min(alphaVals) - 0.1, np.max(alphaVals) + 0.1])
    pylab.ylim([np.min(exactVals) - 0.05, np.max(exactVals) + 0.05])
    pylab.xticks(np.arange(np.max(alphaVals) + 1))

    pylab.legend(['c_D exact',
                  'c_D surrogate'],
                 fontsize=LEGENDSIZE,
                 loc='lower right')
    pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_tree_data(data, indicies_x, indicies_y, model):
    plt.subplot(3, 1, 1)
    data, indicies_x, indicies_y, model = load_tree_data()
    data_line, = plt.plot(data, color="blue", label="data")
    data_indicies_line, = plt.plot(
        indicies_x,
        indicies_y,
        "o",
        color="green",
        label="fitness predictors"
    )
    model_line, = plt.plot(model, color="red", label="model")
    plt.title("Data and Model Output")
    plt.legend()

    return data_line, data_indicies_line, model_line
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_tree_data(data, indicies_x, indicies_y, model, plot_indicies=False):
    plt.subplot(3, 1, 1)
    plt.plot(data, "o", color="blue", label="data")
    plt.plot(model, color="red", label="model")
    plt.ylim([-10, 10])

    if plot_indicies:
        plt.plot(
            indicies_x,
            indicies_y,
            "o",
            color="green",
            label="fitness predictors"
        )

    plt.title("Data and Model Output")
    plt.legend()
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def energy_profile(self,ixaxis):
        """
            Plot radial profile of key energy generations eps_nuc,
            eps_neu etc.

            Parameters
            ----------
            ixaxis : 'mass' or 'radius'
        """

        mass = self.get('mass')
        radius = self.get('radius') * ast.rsun_cm
        eps_nuc = self.get('eps_nuc')
        eps_neu = self.get('non_nuc_neu')

        if ixaxis == 'mass':
            xaxis = mass
            xlab = 'Mass / M$_\odot$'
        else:
            xaxis = old_div(radius, 1.e8) # Mm
            xlab = 'radius / Mm'

        pl.plot(xaxis, np.log10(eps_nuc),
                'k-',
                label='$\epsilon_\mathrm{nuc}>0$')
        pl.plot(xaxis, np.log10(-eps_nuc),
                'k--',
                label='$\epsilon_\mathrm{nuc}<0$')
        pl.plot(xaxis, np.log10(eps_neu),
                'r-',
                label='$\epsilon_\\nu$')

        pl.xlabel(xlab)
        pl.ylabel('$\log(\epsilon_\mathrm{nuc},\epsilon_\\nu)$')
        pl.legend(loc='best').draw_frame(False)
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def hrd_new(self, input_label="", skip=0):
        """
        plot an HR diagram with options to skip the first N lines and
        add a label string

        Parameters
        ----------
        input_label : string, optional
            Diagram label.  The default is "".
        skip : integer, optional
            Skip the first n lines.  The default is 0.

        """
        xl_old=pyl.gca().get_xlim()
        if input_label == "":
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])
        else:
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])+"; "+str(input_label)

        pyl.plot(self.data[skip:,self.cols['log_Teff']-1],self.data[skip:,self.cols['log_L']-1],label = my_label)
        pyl.legend(loc=0)
        xl_new=pyl.gca().get_xlim()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        if any(array(xl_old)==0):
            pyl.gca().set_xlim(max(xl_new),min(xl_new))
        elif any(array(xl_new)==0):
            pyl.gca().set_xlim(max(xl_old),min(xl_old))
        else:
            pyl.gca().set_xlim([max(xl_old+xl_new),min(xl_old+xl_new)])
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def t_lumi(self,num_frame,xax):
        """
        Luminosity evolution as a function of time or model.

        Parameters
        ----------
        num_frame : integer
            Number of frame to plot this plot into.
        xax : string
            Either model or time to indicate what is to be used on the
            x-axis

        """

        pyl.figure(num_frame)

        if xax == 'time':
            xaxisarray = self.get('star_age')
        elif xax == 'model':
            xaxisarray = self.get('model_number')
        else:
            print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"')


        logLH   = self.get('log_LH')
        logLHe  = self.get('log_LHe')

        pyl.plot(xaxisarray,logLH,label='L_(H)')
        pyl.plot(xaxisarray,logLHe,label='L(He)')
        pyl.ylabel('log L')
        pyl.legend(loc=2)


        if xax == 'time':
            pyl.xlabel('t / yrs')
        elif xax == 'model':
            pyl.xlabel('model number')
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def test_abu_evolution(self):
        from nugridpy import ppn, utils
        import matplotlib
        matplotlib.use('agg')
        import matplotlib.pylab as mpy
        import os

        # Perform tests within temporary directory
        with TemporaryDirectory() as tdir:
            # wget the data for a ppn run from the CADC VOspace
            os.system("wget -q --content-disposition --directory '" + tdir +  "' "\
                          + "'http://www.canfar.phys.uvic.ca/vospace/synctrans?TARGET="\
                          + "vos%3A%2F%2Fcadc.nrc.ca%21vospace%2Fnugrid%2Fdata%2Fprojects%2Fppn%2Fexamples%2F"\
                          + "ppn_Hburn_simple%2Fx-time.dat&DIRECTION=pullFromVoSpace&PROTOCOL"\
                          + "=ivo%3A%2F%2Fivoa.net%2Fvospace%2Fcore%23httpget'")

            #nugrid_dir= os.path.dirname(os.path.dirname(ppn.__file__))
            #NuPPN_dir= nugrid_dir + "/NuPPN"
            #test_data_dir= NuPPN_dir + "/examples/ppn_Hburn_simple/RUN_MASTER"

            symbs=utils.symbol_list('lines2')
            x=ppn.xtime(tdir)
            specs=['PROT','HE  4','C  12','N  14','O  16']
            i=0
            for spec in specs:
                x.plot('time',spec,logy=True,logx=True,shape=utils.linestyle(i)[0],show=False,title='')
                i += 1
            mpy.ylim(-5,0.2)
            mpy.legend(loc=0)
            mpy.xlabel('$\log t / \mathrm{min}$')
            mpy.ylabel('$\log X \mathrm{[mass fraction]}$')
            abu_evol_file = 'abu_evolution.png'
            mpy.savefig(abu_evol_file)
            self.assertTrue(os.path.exists(abu_evol_file))
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def set_nice_params():
    fsize=18

    params = {'axes.labelsize':  fsize,
    #    'font.family':       'serif',
    'font.family':        'Times New Roman',
    'figure.facecolor':  'white',
    'text.fontsize':     fsize,
    'legend.fontsize':   fsize,
    'xtick.labelsize':   fsize*0.8,
    'ytick.labelsize':   fsize*0.8,
    'text.usetex':       False}
    pl.rcParams.update(params)
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_1(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                    symbol=None):
        """
        plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        symbol : string, optional
            Which symbol you want to use.  If None symbol is set to '-'.
            The default is None.

        """
        DataPlot.plot_prof_1(self,species,mod,xlim1,xlim2,ylim1,ylim2,symbol)
        """
        tot_mass=self.se.get(mod,'total_mass')
        age=self.se.get(mod,'age')
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'iso_massf',species)
        pyl.plot(mass,np.log10(Xspecies),'-',label=species)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()

        pl.xlabel('$Mass$ $coordinate$', fontsize=20)
        pl.ylabel('$X_{i}$', fontsize=20)
        pl.title('Mass='+str(tot_mass)+', Time='+str(age)+' years, cycle='+str(mod))
        """
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot4(self, num):
        """
           Plots the abundances of H-1, He-4, C-12 and O-16.
        """
        self.plot_prof_1(num,'H-1',0.,5.,-5,0.)
        self.plot_prof_1(num,'He-4',0.,5.,-5,0.)
        self.plot_prof_1(num,'C-12',0.,5.,-5,0.)
        self.plot_prof_1(num,'O-16',0.,5.,-5,0.)
        pyl.legend(loc=3)
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_sparse(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                         sparse, symbol):

        """
        plot one species for cycle between xlim1 and xlim2.

        Parameters
        ----------
        species : list
            which species to plot.
        mod : string or integer
            Model (cycle) to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        sparse : integer
            Sparsity factor for points.
        symbol : string
            which symbol you want to use?

        """
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass[0:len(mass):sparse],np.log10(Xspecies[0:len(Xspecies):sparse]),symbol)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def abup_se_plot(mod,species):

        """
        plot species from one ABUPP file and the se file.

        You must use this function in the directory where the ABP files
        are and an ABUP file for model mod must exist.

        Parameters
        ----------
        mod : integer
            Model to plot, you need to have an ABUPP file for that
            model.
        species : string
            The species to plot.

        Notes
        -----
        The species is set to 'C-12'.

        """

# Marco, you have already implemented finding headers and columns in
# ABUP files. You may want to transplant that into here?
        species='C-12'

        filename = 'ABUPP%07d0000.DAT' % mod
        print(filename)
        mass,c12=np.loadtxt(filename,skiprows=4,usecols=[1,18],unpack=True)
        c12_se=self.se.get(mod,'iso_massf','C-12')
        mass_se=self.se.get(mod,'mass')

        pyl.plot(mass,c12)
        pyl.plot(mass_se,c12_se,'o',label='cycle '+str(mod))
        pyl.legend()
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
  num_methods = len(methods)
  num_datasets = len(datasets)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.6 / num_methods / num_datasets
  spacing = 0.4 / num_methods / num_datasets
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('Time [s]', color='b')
  ax1.tick_params('y', colors='b')
  ax1.set_yscale('log')
  fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
  handles = []
  for i, dataset in enumerate(datasets):
    runtimes = [runtimes_per_method[dataset][method] for method in methods]
    bp = ax1.boxplot(
        runtimes, 0, '',
        positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
                   spacing * 2),
        widths=width)
    plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
    plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
    plt.setp(bp['fliers'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['medians'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
    handles.append(mpatches.Patch(color=colors[i], label=dataset))
  plt.legend(handles=handles, loc=2)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
           x_ticks[-1] + 2.5 * spacing * num_datasets)

  plt.show()
项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码
def onehist(x,xlabel='',fontsize=12):
    """ 
Script that plots the histogram of x with the corresponding xlabel. 
    """

    pylab.clf()
    pylab.rcParams.update({'font.size': fontsize})
    pylab.hist(x,histtype='stepfilled')
    pylab.legend()
    #### Change the X-axis appropriately ####
    pylab.xlabel(xlabel)
    pylab.ylabel('Number')
    pylab.draw()
    pylab.show()
项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码
def threehistsx(x1,x2,x3,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',fig=1,fontsize=12,bins1=10,bins2=10,bins3=10):
    """
Script that pretty-plots three histograms of quantities x1, x2 and x3.

Arguments:
:param x1,x2,x3: arrays with data to be plotted
:param x1leg, x2leg, x3leg: legends for each histogram  
:param fig: which plot window should I use?

Example:
x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10)

>>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)')

Inspired by http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label.
    """
    pylab.rcParams.update({'font.size': fontsize})
    pylab.figure(fig)
    pylab.clf()

    pylab.subplot(3,1,1)
    pylab.hist(x1,label=x1leg,color='b',bins=bins1)
    pylab.legend(loc='best',frameon=False)

    pylab.subplot(3,1,2)
    pylab.hist(x2,label=x2leg,color='r',bins=bins2)
    pylab.legend(loc='best',frameon=False)

    pylab.subplot(3,1,3)
    pylab.hist(x3,label=x3leg,color='y',bins=bins3)
    pylab.legend(loc='best',frameon=False)

    pylab.minorticks_on()
    pylab.subplots_adjust(hspace=0.15)
    pylab.draw()
    pylab.show()
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def demo(text=None):
    from nltk.corpus import brown
    from matplotlib import pylab
    tt = TextTilingTokenizer(demo_mode=True)
    if text is None: text = brown.raw()[:10000]
    s, ss, d, b = tt.tokenize(text)
    pylab.xlabel("Sentence Gap index")
    pylab.ylabel("Gap Scores")
    pylab.plot(range(len(s)), s, label="Gap Scores")
    pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
    pylab.plot(range(len(d)), d, label="Depth scores")
    pylab.stem(range(len(b)), b)
    pylab.legend()
    pylab.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_position(self, pos_true, pos_est, cam_states):
        N = pos_est.shape[1]
        pos_true = pos_true[:, :N]
        pos_est = pos_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Position")

        # Ground truth
        plt.plot(pos_true[0, :], pos_true[1, :],
                 color="red", label="Grouth truth")
                 # color="red", marker="x", label="Grouth truth")

        # Estimated
        plt.plot(pos_est[0, :], pos_est[1, :],
                 color="blue", label="Estimated")
                 # color="blue", marker="o", label="Estimated")

        # Sliding window
        cam_pos = []
        for cam_state in cam_states:
            cam_pos.append(cam_state.p_G)
        cam_pos = np.array(cam_pos).reshape((len(cam_pos), 3)).T
        plt.plot(cam_pos[0, :], cam_pos[1, :],
                 color="green", label="Camera Poses")
                 # color="green", marker="o", label="Camera Poses")

        # Plot labels and legends
        plt.xlabel("East (m)")
        plt.ylabel("North (m)")
        plt.axis("equal")
        plt.legend(loc=0)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_velocity(self, timestamps, vel_true, vel_est):
        N = vel_est.shape[1]
        t = timestamps[:N]
        vel_true = vel_true[:, :N]
        vel_est = vel_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Velocity")

        # X axis
        plt.subplot(311)
        plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Y axis
        plt.subplot(312)
        plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Z axis
        plt.subplot(313)
        plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_attitude(self, timestamps, att_true, att_est):
        # Setup
        N = att_est.shape[1]
        t = timestamps[:N]
        att_true = att_true[:, :N]
        att_est = att_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Attitude")

        # X axis
        plt.subplot(311)
        plt.plot(t, att_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Y axis
        plt.subplot(312)
        plt.plot(t, att_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Z axis
        plt.subplot(313)
        plt.plot(t, att_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_velocity(self, timestamps, vel_true, vel_est):
        N = vel_est.shape[1]
        t = timestamps[:N]
        vel_true = vel_true[:, :N]
        vel_est = vel_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Velocity")

        # X axis
        plt.subplot(311)
        plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Y axis
        plt.subplot(312)
        plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Z axis
        plt.subplot(313)
        plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_step(self):
        # Step
        a_B_history = self.dataset.a_B
        w_B_history = self.dataset.w_B

        for i in range(30):
            (a_B, w_B) = self.dataset.step()
            a_B_history = np.hstack((a_B_history, a_B))
            w_B_history = np.hstack((w_B_history, w_B))

        # Plot
        debug = False
        # debug = True
        if debug:
            plt.subplot(211)
            plt.plot(self.dataset.time_true, a_B_history[0, :], label="ax")
            plt.plot(self.dataset.time_true, a_B_history[1, :], label="ay")
            plt.plot(self.dataset.time_true, a_B_history[2, :], label="az")
            plt.legend(loc=0)

            plt.subplot(212)
            plt.plot(self.dataset.time_true, w_B_history[0, :], label="wx")
            plt.plot(self.dataset.time_true, w_B_history[1, :], label="wy")
            plt.plot(self.dataset.time_true, w_B_history[2, :], label="wz")
            plt.legend(loc=0)
            plt.show()
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_bias_variance(data_sizes, train_errors, test_errors, name):
    pylab.clf()
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1)
    pylab.legend(["train error", "test error"], loc="upper right")
    pylab.grid()
    pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png"))
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_roc(auc_score, name, fpr, tpr):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % (
        auc_score, name))
    pylab.legend(loc="lower right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.fill_between(tpr, fpr, alpha=0.5)
    pylab.plot(fpr, tpr, lw=1)
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_") + ".png"))
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_bias_variance(data_sizes, train_errors, test_errors, name, title):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, test_errors, "--", data_sizes, train_errors, "b-", lw=1)
    pylab.legend(["test error", "train error"], loc="upper right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.savefig(
        os.path.join(CHART_DIR, "bv_" + name.replace(" ", "_") + ".png"), bbox_inches="tight")
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_k_complexity(ks, train_errors, test_errors):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('k')
    pylab.ylabel('Error')
    pylab.title('Errors for for different values of $k$')
    pylab.plot(
        ks, test_errors, "--", ks, train_errors, "-", lw=1)
    pylab.legend(["test error", "train error"], loc="upper right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.savefig(
        os.path.join(CHART_DIR, "kcomplexity.png"), bbox_inches="tight")
项目:mlprojects-py    作者:srinathperera    | 项目源码 | 文件源码
def print_graph(X_all, X_test, y_all, y_pred1, y_pred2):
    training_size = X_all.shape[0] - X_test.shape[0]
    x_full_limit = np.linspace(1, X_all.shape[0], X_all.shape[0])
    y_pred_limit = np.linspace(training_size+1, training_size + 1 + X_test.shape[0], X_test.shape[0])
    plt.plot(x_full_limit, y_all, label='actual', color='b', linewidth=1)
    plt.plot(y_pred_limit, y_pred1, '--', color='r', linewidth=2, label='prediction1')
    plt.plot(y_pred_limit, y_pred2, '--', color='g', linewidth=2, label='prediction2')
    plt.legend(loc=0)
    plt.show()
项目:mlprojects-py    作者:srinathperera    | 项目源码 | 文件源码
def print_graph_test(y_test, y_pred1, y_pred2, maxEntries=50):
    #y_pred_limit = min(maxEntries, len(y_test))
    length = min(maxEntries,len(y_test))
    y_pred_limit = np.linspace(1, length, length)
    plt.plot(y_pred_limit, y_test, label='actual', color='b', linewidth=1)
    plt.plot(y_pred_limit, y_pred1, '--', color='r', linewidth=2, label='prediction1')
    plt.plot(y_pred_limit, y_pred2, '--', color='g', linewidth=2, label='prediction2')
    plt.legend(loc=0)
    plt.show()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def demo(text=None):
    from nltk.corpus import brown
    from matplotlib import pylab
    tt = TextTilingTokenizer(demo_mode=True)
    if text is None: text = brown.raw()[:10000]
    s, ss, d, b = tt.tokenize(text)
    pylab.xlabel("Sentence Gap index")
    pylab.ylabel("Gap Scores")
    pylab.plot(range(len(s)), s, label="Gap Scores")
    pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
    pylab.plot(range(len(d)), d, label="Depth scores")
    pylab.stem(range(len(b)), b)
    pylab.legend()
    pylab.show()
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def display(pklfile, request=['train_data_accuracy', 'train_sample_accuracy']) :
    for key in request :
        plt.plot(pklfile[key], label=key)

    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=len(request), mode="expand", borderaxespad=0.)
    plt.show()
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def N15_testing2():
    """ Test direkt the implemented fit method with simulated data."""

    x_axis = np.linspace(2850, 2860, 101)*1e6

    mod,params = qudi_fitting.make_multiplelorentzian_model(no_of_functions=2)
#            print('Parameters of the model',mod.param_names)

    p=Parameters()

    p.add('l0_amplitude',value=-3e4)
    p.add('l0_center',value=2850*1e6+abs(np.random.random(1)*8)*1e6)
#            p.add('lorentz0_sigma',value=abs(np.random.random(1)*1)*1e6+0.5*1e6)
    p.add('l0_sigma',value=0.5*1e6)
    p.add('l1_amplitude',value=p['l0_amplitude'].value)
    p.add('l1_center',value=p['l0_center'].value+3.03*1e6)
    p.add('l1_sigma',value=p['l0_sigma'].value)
    p.add('offset',value=100.)

    data_nice = mod.eval(x=x_axis, params=p)

    data_noisy=(data_nice + 14000*np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_lorentziandouble_fit(x_axis, data_noisy,
                                                       estimator=qudi_fitting.estimate_lorentziandouble_N15)

    plt.figure()
    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis, result.init_fit,'-y', label='initial values')
    plt.plot(x_axis, result.best_fit,'-r', label='actual fit')
    plt.plot(x_axis, data_nice,'-g', label='actual fit')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def N14_testing_data2():
    """ Test the N14 fit with data from file. """

    # get the model of the three lorentzian peak, this gives you the
    # ability to get the used parameter container for the fit.
    mod, params = qudi_fitting.make_multiplelorentzian_model(no_of_functions=3)

    # you can insert the whole path with the windows separator
    # symbol \ just use the r in front of the string to indicated
    # that this is a raw input. The os package will do the rest.
    path = os.path.abspath(r'C:\Users\astark\Dropbox\Doctorwork\Software\QuDi-Git\qudi\pulsedODMRdata.csv')
    data = np.genfromtxt(path,delimiter=',')
#    data = np.loadtxt(path, delimiter=',')
#    print(data)

    # The data for the fit:
    x_axis = data[:,0]*1e8
    data_noisy = data[:,1]


    result = qudi_fitting.make_N14_fit(x_axis, data_noisy)

    print(result.fit_report())

    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis,result.best_fit,'-r', label='best fit result')
    plt.plot(x_axis,result.init_fit,'-g',label='initial fit')
#            plt.plot(x_axis, data_test,'-k', label='test data')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def gaussianpeak_testing2():
    """ Test the implemented Gaussian peak fit. """

    x_axis = np.linspace(0, 5, 11)

    ampl = 10000
    center = 3
    sigma = 1
    offset = 10000

    mod_final, params = qudi_fitting.make_gaussoffset_model()
    data_noisy = mod_final.eval(x=x_axis, amplitude=ampl, center=center,
                                sigma=sigma, offset=offset) + \
                                2000*abs(np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_gaussoffsetpeak_fit(x_axis=x_axis, data=data_noisy)

    plt.figure()
    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis, result.best_fit,'-r', label='best fit result')
    plt.plot(x_axis, result.init_fit,'-g',label='initial fit')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
    print(result.fit_report())
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def gaussiandip_testing2():
    """ Test the implemented Gaussian dip fit. """

    x_axis = np.linspace(0, 5, 11)

    ampl = -10000
    center = 3
    sigma = 1
    offset = 10000

    mod_final, params = qudi_fitting.make_gaussoffset_model()
    data_noisy = mod_final.eval(x=x_axis, amplitude=ampl, center=center,
                                sigma=sigma, offset=offset) + \
                                5000*abs(np.random.normal(size=x_axis.shape))

    result = qudi_fitting.make_gaussoffsetdip_fit(x_axis=x_axis, data=data_noisy)

    plt.figure()
    plt.plot(x_axis, data_noisy,'-b', label='data')
    plt.plot(x_axis, result.best_fit,'-r', label='best fit result')
    plt.plot(x_axis, result.init_fit,'-g',label='initial fit')
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Counts (#)')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
               ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
    print(result.fit_report())
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def gaussianlinearoffset_testing_data():

    x = np.linspace(0, 5, 30)
    x_nice=np.linspace(0, 5, 101)

    mod_final,params = qudi_fitting.make_gaussianwithslope_model()

    data=np.loadtxt("./../1D_shllow.csv")
    data_noisy=data[:,1]
    data_fit=data[:,3]
    x=data[:,2]


    update=dict()
    update["slope"]={"min":-np.inf,"max":np.inf}
    update["offset"]={"min":-np.inf,"max":np.inf}
    update["sigma"]={"min":-np.inf,"max":np.inf}
    update["center"]={"min":-np.inf,"max":np.inf}
    update["amplitude"]={"min":-np.inf,"max":np.inf}
    result=qudi_fitting.make_gaussianwithslope_fit(x_axis=x, data=data_noisy, add_params=update)
#
##
#    gaus=gaussian(3,5)
#    qudi_fitting.data_smooth = filters.convolve1d(qudi_fitting.data_noisy, gaus/gaus.sum(),mode='mirror')

    plt.plot(x,data_noisy,label="data")
    plt.plot(x,data_fit,"k",label="old fit")
    plt.plot(x,result.init_fit,'-g',label='init')
    plt.plot(x,result.best_fit,'-r',label='fit')
    plt.legend()
    plt.show()
    print(result.fit_report())