Python matplotlib.pylab 模块,subplot() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pylab.subplot()

项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def plot(l, x1, x2, y, e):
    # Plot
    time_range = numpy.arange(0, l)
    pl.figure(1)
    pl.subplot(221)
    pl.plot(time_range, x1)
    pl.title("Input signal")
    pl.subplot(222)
    pl.plot(time_range, x2, c="r")
    pl.plot(time_range, y, c="b")
    pl.title("Reference signal")
    pl.subplot(223)
    pl.plot(time_range, e, c="r")
    pl.title("Noise")
    pl.xlabel("time")
    pl.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_augment_state(self):
        self.msckf.augment_state()

        N = self.msckf.N()
        self.assertTrue(self.msckf.P_cam is not None)
        self.assertTrue(self.msckf.P_imu_cam is not None)
        self.assertEqual(self.msckf.P_cam.shape, (N * 6, N * 6))
        self.assertEqual(self.msckf.P_imu_cam.shape, (15, N * 6))
        self.assertEqual(self.msckf.N(), 2)

        self.assertTrue(np.array_equal(self.msckf.cam_states[0].q_CG,
                                       self.msckf.ext_q_CI))
        self.assertEqual(self.msckf.counter_frame_id, 2)

        # Plot matrix
        # debug = True
        debug = False
        if debug:
            ax = plt.subplot(111)
            ax.matshow(self.msckf.P())
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_F(self):
        w_hat = np.array([1.0, 2.0, 3.0])
        q_hat = np.array([0.0, 0.0, 0.0, 1.0])
        a_hat = np.array([1.0, 2.0, 3.0])
        w_G = np.array([0.1, 0.1, 0.1])

        F = self.imu_state.F(w_hat, q_hat, a_hat, w_G)

        # -- First row --
        self.assertTrue(np_equal(F[0:3, 0:3], -skew(w_hat)))
        self.assertTrue(np_equal(F[0:3, 3:6], -np.ones((3, 3))))
        # -- Third Row --
        self.assertTrue(np_equal(F[6:9, 0:3], dot(-C(q_hat).T, skew(a_hat))))
        self.assertTrue(np_equal(F[6:9, 6:9], -2.0 * skew(w_G)))
        self.assertTrue(np_equal(F[6:9, 9:12], -C(q_hat).T))
        self.assertTrue(np_equal(F[6:9, 12:15], -skewsq(w_G)))
        # -- Fifth Row --
        self.assertTrue(np_equal(F[12:15, 6:9], np.ones((3, 3))))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(F)
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_G(self):
        q_hat = np.array([0.0, 0.0, 0.0, 1.0]).reshape((4, 1))
        G = self.imu_state.G(q_hat)

        # -- First row --
        self.assertTrue(np_equal(G[0:3, 0:3], -np.ones((3, 3))))
        # -- Second row --
        self.assertTrue(np_equal(G[3:6, 3:6], np.ones((3, 3))))
        # -- Third row --
        self.assertTrue(np_equal(G[6:9, 6:9], -C(q_hat).T))
        # -- Fourth row --
        self.assertTrue(np_equal(G[9:12, 9:12], np.ones((3, 3))))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(G)
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_J(self):
        # Setup
        cam_q_CI = np.array([0.0, 0.0, 0.0, 1.0])
        cam_p_IC = np.array([1.0, 1.0, 1.0])
        q_hat_IG = np.array([0.0, 0.0, 0.0, 1.0])
        N = 1
        J = self.imu_state.J(cam_q_CI, cam_p_IC, q_hat_IG, N)

        # Assert
        C_CI = C(cam_q_CI)
        C_IG = C(q_hat_IG)
        # -- First row --
        self.assertTrue(np_equal(J[0:3, 0:3], C_CI))
        # -- Second row --
        self.assertTrue(np_equal(J[3:6, 0:3], skew(dot(C_IG.T, cam_p_IC))))
        # -- Third row --
        self.assertTrue(np_equal(J[3:6, 12:15], I(3)))

        # Plot matrix
        if self.debug:
            ax = plt.subplot(111)
            ax.matshow(J)
            plt.show()
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def visualize_model_init(self):
        """smpSHL.visualize_model_init

        Init model visualization
        """

        self.Ridx  = np.random.choice(self.modelsize, min(30, int(self.modelsize * 0.1)))
        self.Rhist = []
        self.losshist = []
        self.Whist = []

        fig = make_figure()
        # print "fig", fig
        self.figs.append(fig)
        gs = make_gridspec(5, 1)
        for subplot in gs:
            self.figs[0].add_subplot(subplot)
项目:gps    作者:cbfinn    | 项目源码 | 文件源码
def __init__(self, fig, gs, label='mean', color='black', alpha=1.0, min_itr=10):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._label = label
        self._color = color
        self._alpha = alpha
        self._min_itr = min_itr

        self._ts = np.empty((1, 0))
        self._data_mean = np.empty((1, 0))
        self._plots_mean = self._ax.plot([], [], '-x', markeredgewidth=1.0,
                color=self._color, alpha=1.0, label=self._label)[0]

        self._ax.set_xlim(0-0.5, self._min_itr+0.5)
        self._ax.set_ylim(0, 1)
        self._ax.minorticks_on()
        self._ax.legend(loc='upper right', bbox_to_anchor=(1, 1))

        self._init = False

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def show_samples(y, ndim, nb=10, cmap=''):
    if ndim == 4:
        for i in range(nb**2):
            plt.subplot(nb, nb, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    else:
        x = y[0]
        y = y[1]
        plt.figure(0)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(x[i], cmap=cmap, interpolation='none')
            plt.axis('off')

        plt.figure(1)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    plt.show()
项目:gps_superball_public    作者:young-geng    | 项目源码 | 文件源码
def __init__(self, fig, gs, label='mean', color='black', alpha=1.0, min_itr=10):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._label = label
        self._color = color
        self._alpha = alpha
        self._min_itr = min_itr

        self._ts = np.empty((1, 0))
        self._data_mean = np.empty((1, 0))
        self._plots_mean = self._ax.plot([], [], '-x', markeredgewidth=1.0,
                color=self._color, alpha=1.0, label=self._label)[0]

        self._ax.set_xlim(0-0.5, self._min_itr+0.5)
        self._ax.set_ylim(0, 1)
        self._ax.minorticks_on()
        self._ax.legend(loc='upper right', bbox_to_anchor=(1, 1))

        self._init = False

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def showExampleDocs(pylab=None, nrows=3, ncols=3):
    if pylab is None:
        from matplotlib import pylab
    Data = get_data(seed=0, nObsPerDoc=200)
    PRNG = np.random.RandomState(0)
    chosenDocs = PRNG.choice(Data.nDoc, nrows * ncols, replace=False)
    for ii, d in enumerate(chosenDocs):
        start = Data.doc_range[d]
        stop = Data.doc_range[d + 1]
        Xd = Data.X[start:stop]
        pylab.subplot(nrows, ncols, ii + 1)
        pylab.plot(Xd[:, 0], Xd[:, 1], 'k.')
        pylab.axis('image')
        pylab.xlim([-1.5, 1.5])
        pylab.ylim([-1.5, 1.5])
        pylab.xticks([])
        pylab.yticks([])
    pylab.tight_layout()
# Set Toy Parameters
###########################################################
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_tree_data(data, indicies_x, indicies_y, model):
    plt.subplot(3, 1, 1)
    data, indicies_x, indicies_y, model = load_tree_data()
    data_line, = plt.plot(data, color="blue", label="data")
    data_indicies_line, = plt.plot(
        indicies_x,
        indicies_y,
        "o",
        color="green",
        label="fitness predictors"
    )
    model_line, = plt.plot(model, color="red", label="model")
    plt.title("Data and Model Output")
    plt.legend()

    return data_line, data_indicies_line, model_line
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_tree_data(data, indicies_x, indicies_y, model, plot_indicies=False):
    plt.subplot(3, 1, 1)
    plt.plot(data, "o", color="blue", label="data")
    plt.plot(model, color="red", label="model")
    plt.ylim([-10, 10])

    if plot_indicies:
        plt.plot(
            indicies_x,
            indicies_y,
            "o",
            color="green",
            label="fitness predictors"
        )

    plt.title("Data and Model Output")
    plt.legend()
项目:POT    作者:rflamary    | 项目源码 | 文件源码
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True):
    spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False)
    bark_filters = int(np.ceil(freq2bark(sr//2)))
    wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters)
    '''
    plt.figure()
    plt.subplot(211)
    plt.imshow(wts)
    plt.subplot(212)
    plt.hold(True)
    for i in range(18):
        plt.plot(wts[i, :])
    plt.show()
    '''
    bark_spec = np.matmul(wts, spec)
    if do_rasta:
        bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec)
        log_bark_spec = np.log(bark_spec)
        rasta_log_bark_spec = rasta_filt(log_bark_spec)
        bark_spec = np.exp(rasta_log_bark_spec)
    post_spec = postaud(bark_spec, sr/2.)
    if plp_order > 0:
        lpcas = do_lpc(post_spec, plp_order)
        # lpcas = do_lpc(spec, plp_order) # just for test
    else:
        lpcas = post_spec
    return lpcas
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def plot(l, samp, w1, w2, cor):
    time_range = numpy.arange(0, l) * (1.0 / samp)

    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, w1)
    pl.subplot(212)
    pl.plot(time_range, w2, c="r")
    pl.xlabel("time")

    pl.figure(2)
    pl.plot(time_range, cor)
    pl.show()
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[1:3]
    nframes = w1.shape[0]

    # Cut one channel in the tail, while the other in the head,
    # to guarantee same length and first delays second.
    cut_time_len = 0.2  # second
    cut_len = int(cut_time_len * sampling)
    wp1 = w1[:-cut_len]
    wp2 = w2[cut_len:]

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes - cut_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def main():
    sampling, maxvalue, wave_data = record.record()

    # Pick out two channels for our study.
    w1, w2 = wave_data[0:2]
    nframes = w1.shape[0]

    # Pad one channel in the head, while the other in the tail,
    # to guarantee same length.
    pad_time_len = 0.01  # second
    pad_len = int(pad_time_len * sampling)
    pad_arr = numpy.zeros(pad_len)
    wp1 = numpy.concatenate((pad_arr, w1))
    wp2 = numpy.concatenate((w2, pad_arr))

    # Get their reduced (amplitude) version, and
    # calculate correlation.
    a = numpy.array(wp1, dtype=numpy.double) / maxvalue
    b = numpy.array(wp2, dtype=numpy.double) / maxvalue
    delay_time = delay.fst_delay_snd(a, b, sampling)

    # Plot the channels, also the correlation.
    time_range = numpy.arange(0, nframes + pad_len)*(1.0/sampling)

    # Still shows the original signal
    pl.figure(1)
    pl.subplot(211)
    pl.plot(time_range, wp1)
    pl.subplot(212)
    pl.plot(time_range, wp2, c="r")
    pl.xlabel("time")
    pl.show()

    # Print delay
    print("Chan 1 delay chan 2 by {0}".format(delay_time))
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def plot_angular_velocities(title,
                            angular_velocities,
                            angular_velocities_filtered,
                            block=True):
  fig = plt.figure()

  title_position = 1.05

  fig.suptitle(title, fontsize='24')

  a1 = plt.subplot(1, 2, 1)
  a1.set_title(
      "Angular Velocities Before Filtering \nvx [red], vy [green], vz [blue]",
      y=title_position)
  plt.plot(angular_velocities[:, 0], c='r')
  plt.plot(angular_velocities[:, 1], c='g')
  plt.plot(angular_velocities[:, 2], c='b')

  a2 = plt.subplot(1, 2, 2)
  a2.set_title(
      "Angular Velocities After Filtering \nvx [red], vy [green], vz [blue]", y=title_position)
  plt.plot(angular_velocities_filtered[:, 0], c='r')
  plt.plot(angular_velocities_filtered[:, 1], c='g')
  plt.plot(angular_velocities_filtered[:, 2], c='b')

  plt.subplots_adjust(left=0.025, right=0.975, top=0.8, bottom=0.05)

  if plt.get_backend() == 'TkAgg':
    mng = plt.get_current_fig_manager()
    max_size = mng.window.maxsize()
    max_size = (max_size[0], max_size[1] * 0.45)
    mng.resize(*max_size)
  plt.show(block=block)
项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码
def threehistsx(x1,x2,x3,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',fig=1,fontsize=12,bins1=10,bins2=10,bins3=10):
    """
Script that pretty-plots three histograms of quantities x1, x2 and x3.

Arguments:
:param x1,x2,x3: arrays with data to be plotted
:param x1leg, x2leg, x3leg: legends for each histogram  
:param fig: which plot window should I use?

Example:
x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10)

>>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)')

Inspired by http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label.
    """
    pylab.rcParams.update({'font.size': fontsize})
    pylab.figure(fig)
    pylab.clf()

    pylab.subplot(3,1,1)
    pylab.hist(x1,label=x1leg,color='b',bins=bins1)
    pylab.legend(loc='best',frameon=False)

    pylab.subplot(3,1,2)
    pylab.hist(x2,label=x2leg,color='r',bins=bins2)
    pylab.legend(loc='best',frameon=False)

    pylab.subplot(3,1,3)
    pylab.hist(x3,label=x3leg,color='y',bins=bins3)
    pylab.legend(loc='best',frameon=False)

    pylab.minorticks_on()
    pylab.subplots_adjust(hspace=0.15)
    pylab.draw()
    pylab.show()
项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码
def ipyplots():
    """
Makes sure we have exactly the same matplotlib settings as in the IPython terminal 
version. Call this from IPython notebook.

`Source <http://stackoverflow.com/questions/16905028/why-is-matplotlib-plot-produced-from-ipython-notebook-slightly-different-from-te)>`_.
    """
    pylab.rcParams['figure.figsize']=(8.0,6.0)    #(6.0,4.0)
    pylab.rcParams['font.size']=12                #10 
    pylab.rcParams['savefig.dpi']=100             #72 
    pylab.rcParams['figure.subplot.bottom']=.1    #.125
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_velocity(self, timestamps, vel_true, vel_est):
        N = vel_est.shape[1]
        t = timestamps[:N]
        vel_true = vel_true[:, :N]
        vel_est = vel_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Velocity")

        # X axis
        plt.subplot(311)
        plt.plot(t, vel_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Y axis
        plt.subplot(312)
        plt.plot(t, vel_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)

        # Z axis
        plt.subplot(313)
        plt.plot(t, vel_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, vel_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.xlabel("Date Time")
        plt.ylabel("ms^-1")
        plt.legend(loc=0)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_attitude(self, timestamps, att_true, att_est):
        # Setup
        N = att_est.shape[1]
        t = timestamps[:N]
        att_true = att_true[:, :N]
        att_est = att_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Attitude")

        # X axis
        plt.subplot(311)
        plt.plot(t, att_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Y axis
        plt.subplot(312)
        plt.plot(t, att_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Z axis
        plt.subplot(313)
        plt.plot(t, att_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_P(self):
        self.assertEqual(self.msckf.P().shape, (21, 21))

        # Plot matrix
        # debug = True
        debug = False
        if debug:
            ax = plt.subplot(111)
            ax.matshow(self.msckf.P())
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_H(self):
        # Setup feature track
        track_id = 0
        frame_id = 3
        data0 = KeyPoint(np.array([0.0, 0.0]), 21)
        data1 = KeyPoint(np.array([0.0, 0.0]), 21)
        track = FeatureTrack(track_id, frame_id, data0, data1)

        # Setup track cam states
        self.msckf.augment_state()
        self.msckf.augment_state()
        self.msckf.augment_state()
        self.msckf.augment_state()
        track_cam_states = self.msckf.track_cam_states(track)

        # Feature position
        p_G_f = np.array([[1.0], [2.0], [3.0]])

        # Test
        H_f_j, H_x_j = self.msckf.H(track, track_cam_states, p_G_f)

        # Assert
        self.assertEqual(H_f_j.shape, (4, 3))
        self.assertEqual(H_x_j.shape, (4, 45))

        # Plot matrix
        # debug = True
        debug = False
        if debug:
            ax = plt.subplot(211)
            ax.matshow(H_f_j)
            ax = plt.subplot(212)
            ax.matshow(H_x_j)
            plt.show()
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def plot_attitude(self, timestamps, att_true, att_est):
        # Setup
        N = att_est.shape[1]
        t = timestamps[:N]
        att_true = att_true[:, :N]
        att_est = att_est[:, :N]

        # Figure
        plt.figure()
        plt.suptitle("Attitude")

        # X axis
        plt.subplot(311)
        plt.plot(t, att_true[0, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[0, :], color="blue", label="Estimate")

        plt.title("x-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Y axis
        plt.subplot(312)
        plt.plot(t, att_true[1, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[1, :], color="blue", label="Estimate")

        plt.title("y-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")

        # Z axis
        plt.subplot(313)
        plt.plot(t, att_true[2, :], color="red", label="Ground_truth")
        plt.plot(t, att_est[2, :], color="blue", label="Estimate")

        plt.title("z-axis")
        plt.legend(loc=0)
        plt.xlabel("Date Time")
        plt.ylabel("rad s^-1")
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_step(self):
        # Step
        a_B_history = self.dataset.a_B
        w_B_history = self.dataset.w_B

        for i in range(30):
            (a_B, w_B) = self.dataset.step()
            a_B_history = np.hstack((a_B_history, a_B))
            w_B_history = np.hstack((w_B_history, w_B))

        # Plot
        debug = False
        # debug = True
        if debug:
            plt.subplot(211)
            plt.plot(self.dataset.time_true, a_B_history[0, :], label="ax")
            plt.plot(self.dataset.time_true, a_B_history[1, :], label="ay")
            plt.plot(self.dataset.time_true, a_B_history[2, :], label="az")
            plt.legend(loc=0)

            plt.subplot(212)
            plt.plot(self.dataset.time_true, w_B_history[0, :], label="wx")
            plt.plot(self.dataset.time_true, w_B_history[1, :], label="wy")
            plt.plot(self.dataset.time_true, w_B_history[2, :], label="wz")
            plt.legend(loc=0)
            plt.show()
项目:gps    作者:cbfinn    | 项目源码 | 文件源码
def __init__(self, fig, gs, time_window=500, labels=None, alphas=None):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._time_window = time_window
        self._labels = labels
        self._alphas = alphas
        self._init = False

        if self._labels:
            self.init(len(self._labels))

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend
项目:gps    作者:cbfinn    | 项目源码 | 文件源码
def __init__(self, fig, gs, num_plots, rows=None, cols=None):
        if cols is None:
            cols = int(np.floor(np.sqrt(num_plots)))
        if rows is None:
            rows = int(np.ceil(float(num_plots)/cols))
        assert num_plots <= rows*cols, 'Too many plots to put into gridspec.'

        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(8, 1, subplot_spec=gs)
        self._gs_legend = self._gs[0:1, 0]
        self._gs_plot   = self._gs[1:8, 0]

        self._ax_legend = plt.subplot(self._gs_legend)
        self._ax_legend.get_xaxis().set_visible(False)
        self._ax_legend.get_yaxis().set_visible(False)

        self._gs_plots = gridspec.GridSpecFromSubplotSpec(rows, cols, subplot_spec=self._gs_plot)
        self._axarr = [plt.subplot(self._gs_plots[i], projection='3d') for i in range(num_plots)]
        self._lims = [None for i in range(num_plots)]
        self._plots = [[] for i in range(num_plots)]

        for ax in self._axarr:
            ax.tick_params(pad=0)
            ax.locator_params(nbins=5)
            for item in (ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()):
                item.set_fontsize(10)

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def plot_1d_model(self):
      plt.subplot(131)
      plt.plot(self.rho_bg,self.radius)
      plt.xlabel('density (kg/m3)')
      plt.ylabel('radius (km)')
      plt.subplot(132)
      plt.plot(self.vp_bg,self.radius)
      plt.xlabel('Vp (km/s)')
      plt.ylabel('radius (km)')
      plt.subplot(133)
      plt.plot(self.vs_bg,self.radius)
      plt.xlabel('Vs (km/s)')
      plt.ylabel('radius (km)')
      plt.show()
项目:seqrnns    作者:x75    | 项目源码 | 文件源码
def gen_data2(k = 0, min_length=50, max_length=55, n_batch=5, freq = 2.):
    print "k", k
    # t = np.linspace(0, 2*np.pi, n_batch)
    t = np.linspace(k*n_batch, (k+1)*n_batch+1, n_batch+1, endpoint=False)
    # print "t.shape", t.shape, t, t[:-1], t[1:]
    # freq = 1.
    Xtmp = np.sin(t[:-1] * freq / (2*np.pi))
    print Xtmp.shape
    # Xtmp = [np.sin(t[i:i+max_length]) for i in range(n_batch)]
    # print len(Xtmp)
    X = np.array(Xtmp).reshape((n_batch, input_size))
    # X = 
    # y = np.zeros((n_batch,))
    y = np.sin(t[1:] * freq / (2 * np.pi)).reshape((n_batch, output_size))
    # print X,y
    # print X.shape, y.shape
    # for i in range(batch_size):
    #     pl.subplot(211)
    #     pl.plot(X[i,:,0])
    #     # pl.subplot(312)
    #     # pl.plot(X[i,:,1])
    # pl.subplot(212)
    # pl.plot(y)
    # pl.show()

    return (X,y)
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_feat_hist(data_name_list, filename=None):
    if len(data_name_list) > 1:
        assert filename is not None

    pylab.figure(num=None, figsize=(8, 6))
    num_rows = int(1 + (len(data_name_list) - 1) / 2)
    num_cols = int(1 if len(data_name_list) == 1 else 2)
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Fraction')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x, bins=bins, normed=1, alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name.replace(" ", "_")

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_feat_hist(data_name_list, filename=None):
    pylab.clf()
    num_rows = 1 + (len(data_name_list) - 1) / 2
    num_cols = 1 if len(data_name_list) == 1 else 2
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Density')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x, bins=bins, normed=1, facecolor='green', alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def fancy_show(y, cmap=''):
    x = y[0]
    y = y[1]

    plt.figure(0)
    for i in range(100):
        plt.subplot(10, 10, i+1)
        plt.imshow(x[i], cmap=cmap, interpolation='none')
        plt.axis('off')
    plt.figure(1)
    for i in range(100):
        plt.subplot(10, 10, i+1)
        plt.imshow(y[i], cmap=cmap, interpolation='none')
        plt.axis('off')
    plt.show()
项目:gps_superball_public    作者:young-geng    | 项目源码 | 文件源码
def __init__(self, fig, gs, time_window=500, labels=None, alphas=None):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._time_window = time_window
        self._labels = labels
        self._alphas = alphas
        self._init = False

        if self._labels:
            self.init(len(self._labels))

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend
项目:gps_superball_public    作者:young-geng    | 项目源码 | 文件源码
def __init__(self, fig, gs, num_plots, rows=None, cols=None):
        if cols is None:
            cols = int(np.floor(np.sqrt(num_plots)))
        if rows is None:
            rows = int(np.ceil(float(num_plots)/cols))
        assert num_plots <= rows*cols, 'Too many plots to put into gridspec.'

        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(8, 1, subplot_spec=gs)
        self._gs_legend = self._gs[0:1, 0]
        self._gs_plot   = self._gs[1:8, 0]

        self._ax_legend = plt.subplot(self._gs_legend)
        self._ax_legend.get_xaxis().set_visible(False)
        self._ax_legend.get_yaxis().set_visible(False)

        self._gs_plots = gridspec.GridSpecFromSubplotSpec(rows, cols, subplot_spec=self._gs_plot)
        self._axarr = [plt.subplot(self._gs_plots[i], projection='3d') for i in range(num_plots)]
        self._lims = [None for i in range(num_plots)]
        self._plots = [[] for i in range(num_plots)]

        for ax in self._axarr:
            ax.tick_params(pad=0)
            ax.locator_params(nbins=5)
            for item in (ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()):
                item.set_fontsize(10)

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_representations(X, y, title):
    """Plot distributions and thier labels."""
    x_min, x_max = np.min(X, 0), np.max(X, 0)
    X = (X - x_min) / (x_max - x_min)

    f = plt.figure(figsize=(15, 10.8), dpi=300)
#    ax = plt.subplot(111)
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(y[i]),
                 color=plt.cm.Set1(y[i] / 10.),
                 fontdict={'weight': 'bold', 'size': 9})

#    if hasattr(offsetbox, 'AnnotationBbox'):
#        # only print thumbnails with matplotlib > 1.0
#        shown_images = np.array([[1., 1.]])  # just something big
#        for i in range(digits.data.shape[0]):
#            dist = np.sum((X[i] - shown_images) ** 2, 1)
#            if np.min(dist) < 4e-3:
#                # don't show points that are too close
#                continue
#            shown_images = np.r_[shown_images, [X[i]]]
#            imagebox = offsetbox.AnnotationBbox(
#                offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
#                X[i])
#            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title)
    return f
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_feat_hist(data_name_list, filename=None):
    if len(data_name_list)>1:
        assert filename is not None

    pylab.figure(num=None, figsize=(8, 6))
    num_rows = 1 + (len(data_name_list) - 1) / 2
    num_cols = 1 if len(data_name_list) == 1 else 2
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Fraction')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x,  normed=1, facecolor='blue', alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name.replace(" ", "_")

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_feat_hist(data_name_list, filename=None):
    if len(data_name_list)>1:
        assert filename is not None

    pylab.figure(num=None, figsize=(8, 6))
    num_rows = 1 + (len(data_name_list) - 1) / 2
    num_cols = 1 if len(data_name_list) == 1 else 2
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Fraction')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x,  normed=1, facecolor='blue', alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name.replace(" ", "_")

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotImgPatchPrototypes(doShowNow=True):
    from matplotlib import pylab
    pylab.figure()
    for kk in range(K):
        pylab.subplot(2, 4, kk + 1)
        Xp = makeImgPatchPrototype(D, kk)
        pylab.imshow(Xp, interpolation='nearest')
    if doShowNow:
        pylab.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotTrueCovMats(doShowNow=True):
    from matplotlib import pylab
    pylab.figure()
    for kk in range(K):
        pylab.subplot(2, 4, kk + 1)
        pylab.imshow(Sigma[kk], interpolation='nearest')
    if doShowNow:
        pylab.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def _viz_Gauss(curModel, propModel, Plan,
               curELBO=None, propELBO=None, block=False, **kwargs):
    from ..viz import GaussViz
    from matplotlib import pylab
    pylab.figure()
    h = pylab.subplot(1, 2, 1)
    GaussViz.plotGauss2DFromHModel(curModel, compsToHighlight=Plan['ktarget'])
    h = pylab.subplot(1, 2, 2)
    newCompIDs = np.arange(curModel.obsModel.K, propModel.obsModel.K)
    GaussViz.plotGauss2DFromHModel(propModel, compsToHighlight=newCompIDs)
    pylab.show(block=block)
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_convergence_data(scores, errors):
    subplt_2 = plt.subplot(3, 1, 2)
    score_line, = plt.plot(scores, color="blue", label="score")
    plt.title("Best Score")
    plt.legend()

    subplt_3 = plt.subplot(3, 1, 3)
    error_line, = plt.plot(errors, color="red", label="error")
    plt.title("Best Error")
    plt.legend()

    return score_line, error_line, subplt_2, subplt_3
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_convergence_data(scores, errors):
    subplt_2 = plt.subplot(3, 1, 2)
    score_line, = plt.plot(scores, color="blue", label="score")
    plt.title("Best Score")
    plt.legend()

    subplt_3 = plt.subplot(3, 1, 3)
    error_line, = plt.plot(errors, color="red", label="error")
    plt.title("Best Error")
    plt.legend()

    return score_line, error_line, subplt_2, subplt_3
项目:3Dreconstruction    作者:alyssaq    | 项目源码 | 文件源码
def plot_projections(points):
    num_images = len(points)

    plt.figure()
    plt.suptitle('3D to 2D Projections', fontsize=16)
    for i in range(num_images):
        plt.subplot(1, num_images, i+1)
        ax = plt.gca()
        ax.set_aspect('equal')
        ax.plot(points[i][0], points[i][1], 'r.')
项目:TSS_detection    作者:ueser    | 项目源码 | 文件源码
def plot_profiles_to_file(annot, pntr, ups=200, smooth_param=50):
    pp = PdfPages(options.save_path + 'Figures/individual_signals.pdf')
    clrs_ = ['red', 'blue', 'black', 'orange', 'magenta', 'cyan']
    vec_sense = {}
    vec_antisense = {}
    # for qq in tq(range(annot.shape[0])):
    for qq in tq(range(100)):

        chname = annot['chr'].iloc[qq]

        if annot['strand'].iloc[qq] == '+':
            start = annot['start'].iloc[qq] - ups
            stop = annot['end'].iloc[qq]
            for key in pntr.keys():
                vec_sense[key] = pntr[key][0].get_nparray(chname, start, stop - 1)
                vec_antisense[key] = pntr[key][1].get_nparray(chname, start, stop - 1)
            xran = np.arange(start, stop)
        else:
            start = annot['start'].iloc[qq]
            stop = annot['end'].iloc[qq] + ups
            for key in pntr.keys():
                vec_sense[key] = np.flipud(pntr[key][1].get_nparray(chname, start, stop))
                vec_antisense[key] = np.flipud(pntr[key][0].get_nparray(chname, start, stop))
            xran = np.arange(stop, start, -1)

        ax = {}
        fig = pl.figure()
        pl.title(annot['name'].iloc[qq])
        for i, key in enumerate(pntr.keys()):
            sm_vec_se = sm.smooth(vec_sense[key], smooth_param)[(smooth_param - 1):-(smooth_param - 1)]
            sm_vec_as = sm.smooth(vec_antisense[key], smooth_param)[(smooth_param - 1):-(smooth_param - 1)]
            ax[key] = pl.subplot(len(pntr), 1, i+1)
            ax[key].plot(xran, vec_sense[key], label=key, color=clrs_[i], alpha=0.5)
            ax[key].plot(xran, -vec_antisense[key], color=clrs_[i], alpha=0.5)
            ax[key].plot(xran, sm_vec_se,  color=clrs_[i], linewidth=2)
            ax[key].plot(xran, -sm_vec_as, color=clrs_[i], linewidth=2)
            ax[key].legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), fontsize=6, ncol=1)
        pp.savefig()

        pl.close()
    pp.close()
    for pn in pntr.values():
        pn[0].close()
        pn[1].close()
项目:Spherical-robot    作者:Evan-Zhao    | 项目源码 | 文件源码
def lms(x1: numpy.array, x2: numpy.array, N: int):
    # Verify argument shape.
    s1, s2 = x1.shape, x2.shape
    if len(s1) != 1 or len(s2) != 1 or s1[0] != s2[0]:
        raise Exception("Argument shape invalid, in 'lms' function")
    l = s1[0]

    # Coefficient matrix
    W = numpy.mat(numpy.zeros([1, 2 * N + 1]))
    # Coefficient (time) matrix
    Wt = numpy.mat(numpy.zeros([l, 2 * N + 1]))
    # Feedback (time) matrix
    y = numpy.mat(numpy.zeros([l, 1]))
    # Error (time) matrix
    e = numpy.mat(numpy.zeros([l, 1]))

    # Traverse channel data
    for i in range(N, l-N):
        x1_vec = numpy.asmatrix(x1[i-N:i+N+1])
        y[i] = x1_vec * numpy.transpose(W)
        e[i] = x2[i] - y[i]
        W += mu * e[i] * x1_vec
        Wt[i] = W

    # Find the coefficient matrix which has max maximum.
    Wt_maxs = numpy.max(Wt, axis=1)
    row_idx = numpy.argmax(Wt_maxs)
    max_W = Wt[row_idx]
    delay_count = numpy.argmax(max_W) - N

    # Plot
    time_range = numpy.arange(0, l)
    pl.figure(1)
    pl.subplot(221)
    pl.plot(time_range, x1)
    pl.title("Input signal")
    pl.subplot(222)
    pl.plot(time_range, x2, c="r")
    pl.plot(time_range, y, c="b")
    pl.title("Reference signal")
    pl.subplot(223)
    pl.plot(time_range, e, c="r")
    pl.title("Noise")
    pl.xlabel("time")

    pl.figure(2)
    time_range2 = numpy.arange(-N, N + 1)
    pl.plot(time_range2, numpy.transpose(max_W))
    pl.title("Maximal coefficient vector")

    pl.show()

    return delay_count
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def plot_results(times_A, times_B, signal_A, signal_B,
                 convoluted_signals, time_offset, block=True):

  fig = plt.figure()

  title_position = 1.05

  matplotlib.rcParams.update({'font.size': 20})

  # fig.suptitle("Time Alignment", fontsize='24')
  a1 = plt.subplot(1, 3, 1)

  a1.get_xaxis().get_major_formatter().set_useOffset(False)

  plt.ylabel('angular velocity norm [rad]')
  plt.xlabel('time [s]')
  a1.set_title(
      "Before Time Alignment", y=title_position)
  plt.hold("on")

  min_time = min(np.amin(times_A), np.amin(times_B))
  times_A_zeroed = times_A - min_time
  times_B_zeroed = times_B - min_time

  plt.plot(times_A_zeroed, signal_A, c='r')
  plt.plot(times_B_zeroed, signal_B, c='b')

  times_A_shifted = times_A + time_offset

  a3 = plt.subplot(1, 3, 2)
  a3.get_xaxis().get_major_formatter().set_useOffset(False)
  plt.ylabel('correlation')
  plt.xlabel('sample idx offset')
  a3.set_title(
      "Correlation Result \n[Ideally has a single dominant peak.]",
      y=title_position)
  plt.hold("on")
  plt.plot(np.arange(-len(signal_A) + 1, len(signal_B)), convoluted_signals)

  a2 = plt.subplot(1, 3, 3)
  a2.get_xaxis().get_major_formatter().set_useOffset(False)
  plt.ylabel('angular velocity norm [rad]')
  plt.xlabel('time [s]')
  a2.set_title(
      "After Time Alignment", y=title_position)
  plt.hold("on")
  min_time = min(np.amin(times_A_shifted), np.amin(times_B))
  times_A_shifted_zeroed = times_A_shifted - min_time
  times_B_zeroed = times_B - min_time
  plt.plot(times_A_shifted_zeroed, signal_A, c='r')
  plt.plot(times_B_zeroed, signal_B, c='b')

  plt.subplots_adjust(left=0.04, right=0.99, top=0.8, bottom=0.15)

  if plt.get_backend() == 'TkAgg':
    mng = plt.get_current_fig_manager()
    max_size = mng.window.maxsize()
    max_size = (max_size[0], max_size[1] * 0.45)
    mng.resize(*max_size)
  plt.show(block=block)
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def plot_time_stamped_poses(title,
                            time_stamped_poses_A,
                            time_stamped_poses_B,
                            block=True):
  fig = plt.figure()

  title_position = 1.05

  fig.suptitle(title + " [A = top, B = bottom]", fontsize='24')

  a1 = plt.subplot(2, 2, 1)
  a1.set_title(
      "Orientation \nx [red], y [green], z [blue], w [cyan]",
      y=title_position)
  plt.plot(time_stamped_poses_A[:, 4], c='r')
  plt.plot(time_stamped_poses_A[:, 5], c='g')
  plt.plot(time_stamped_poses_A[:, 6], c='b')
  plt.plot(time_stamped_poses_A[:, 7], c='c')

  a2 = plt.subplot(2, 2, 2)
  a2.set_title(
      "Position (eye coordinate frame) \nx [red], y [green], z [blue]", y=title_position)
  plt.plot(time_stamped_poses_A[:, 1], c='r')
  plt.plot(time_stamped_poses_A[:, 2], c='g')
  plt.plot(time_stamped_poses_A[:, 3], c='b')

  a3 = plt.subplot(2, 2, 3)
  plt.plot(time_stamped_poses_B[:, 4], c='r')
  plt.plot(time_stamped_poses_B[:, 5], c='g')
  plt.plot(time_stamped_poses_B[:, 6], c='b')
  plt.plot(time_stamped_poses_B[:, 7], c='c')

  a4 = plt.subplot(2, 2, 4)
  plt.plot(time_stamped_poses_B[:, 1], c='r')
  plt.plot(time_stamped_poses_B[:, 2], c='g')
  plt.plot(time_stamped_poses_B[:, 3], c='b')

  plt.subplots_adjust(left=0.025, right=0.975, top=0.8, bottom=0.05)

  if plt.get_backend() == 'TkAgg':
    mng = plt.get_current_fig_manager()
    max_size = mng.window.maxsize()
    max_size = (max_size[0], max_size[1] * 0.45)
    mng.resize(*max_size)
  plt.show(block=block)
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 50
    rng = np.random.RandomState(42)
    X = np.sort(2 * rng.rand(N, 1) - 1, axis=0)
    Y = np.array([np.pi * np.sin(10 * X).ravel(),
                  np.pi * np.cos(10 * X).ravel()]).T
    Y += (0.5 - rng.rand(*Y.shape))
    Y = Y / np.std(Y, axis=0)

    def plot(model, alpha, fname):
        xx = np.linspace(-1.2, 1.2, 200)[:, None]
        if isinstance(model, IndepSGPR):
            mf, vf = model.predict_f(xx, alpha)
        else:
            # mf, vf = model.predict_f(xx, alpha, use_mean_only=False)
            mf, vf = model.predict_f(xx, alpha, use_mean_only=True)

        colors = ['r', 'b']
        plt.figure()
        for i in range(model.Dout):
            plt.subplot(model.Dout, 1, i + 1)
            plt.plot(X, Y[:, i], 'x', color=colors[i], mew=2)
            zu = model.models[i].zu
            mean_u, var_u = model.models[i].predict_f(zu, alpha)
            plt.plot(xx, mf[:, i], '-', color=colors[i], lw=2)
            plt.fill_between(
                xx[:, 0],
                mf[:, i] - 2 * np.sqrt(vf[:, i]),
                mf[:, i] + 2 * np.sqrt(vf[:, i]),
                color=colors[i], alpha=0.3)
            # plt.errorbar(zu[:, 0], mean_u, yerr=2*np.sqrt(var_u), fmt='ro')
            plt.xlim(-1.2, 1.2)
        plt.savefig(fname)

    # inference
    print "create independent output model and optimize ..."
    M = N
    alpha = 0.01
    indep_model = IndepSGPR(X, Y, M)
    indep_model.train(alpha=alpha)
    plot(indep_model, alpha, '/tmp/reg_indep_multioutput.pdf')

    print "create correlated output model and optimize ..."
    M = N
    ar_model = AutoSGPR(X, Y, M)
    ar_model.train(alpha=alpha)
    plot(ar_model, alpha, '/tmp/reg_autoreg_multioutput.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_posterior_linear(params_fname, fig_fname, control=False, M=20):
    # load dataset
    data = np.loadtxt('./sandbox/hh_data.txt')
    # use the voltage and potasisum current
    data = data / np.std(data, axis=0)
    y = data[:, :4]
    xc = data[:, [-1]]
    # init hypers
    Dlatent = 2
    Dobs = y.shape[1]
    T = y.shape[0]
    if control:
        x_control = xc
        no_panes = 5
    else:
        x_control = None
        no_panes = 4
    model_aep = aep.SGPSSM_Linear(y, Dlatent, M,
                                  lik='Gaussian', prior_mean=0, prior_var=1000, x_control=x_control)
    model_aep.load_model(params_fname)
    my, vy, vyn = model_aep.get_posterior_y()
    vy_diag = np.diagonal(vy, axis1=1, axis2=2)
    vyn_diag = np.diagonal(vyn, axis1=1, axis2=2)
    cs = ['k', 'r', 'b', 'g']
    labels = ['V', 'm', 'n', 'h']
    plt.figure()
    t = np.arange(T)
    for i in range(4):
        yi = y[:, i]
        mi = my[:, i]
        vi = vy_diag[:, i]
        vin = vyn_diag[:, i]
        plt.subplot(no_panes, 1, i + 1)
        plt.fill_between(t, mi + 2 * np.sqrt(vi), mi - 2 *
                         np.sqrt(vi), color=cs[i], alpha=0.4)
        plt.plot(t, mi, '-', color=cs[i])
        plt.plot(t, yi, '--', color=cs[i])
        plt.ylabel(labels[i])
        plt.xticks([])
        plt.yticks([])

    if control:
        plt.subplot(no_panes, 1, no_panes)
        plt.plot(t, x_control, '-', color='m')
        plt.ylabel('I')
        plt.yticks([])
    plt.xlabel('t')
    plt.savefig(fig_fname)
    if control:
        plot_model_with_control(model_aep, '', '_linear_with_control')
    else:
        plot_model_no_control(model_aep, '', '_linear_no_control')