Python matplotlib.pylab 模块,imshow() 实例源码

我们从Python开源项目中,提取了以下37个代码示例,用于说明如何使用matplotlib.pylab.imshow()

项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_x_x_yhat(x, x_hat):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure()  # figsize=(15, 10.8), dpi=300
    gs = gridspec.GridSpec(1, 2)
    ims = [x, x_hat]
    tils = [
        "xin:" + str(x.shape[0]) + "x" + str(x.shape[1]),
        "xout:" + str(x.shape[1]) + "x" + str(x_hat.shape[1])]
    for n, ti in zip([0, 1], tils):
        f.add_subplot(gs[n])
        plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)
        ax = f.gca()
        ax.set_axis_off()

    return f
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def show_mpl(self, im, enhance=True, clear_fig=True):
        if self._pylab is None:
            import pylab
            self._pylab = pylab
        if self._render_figure is None:
            self._render_figure = self._pylab.figure(1)
        if clear_fig: self._render_figure.clf()

        if enhance:
            nz = im[im > 0.0]
            nim = im / (nz.mean() + 6.0 * np.std(nz))
            nim[nim > 1.0] = 1.0
            nim[nim < 0.0] = 0.0
            del nz
        else:
            nim = im
        ax = self._pylab.imshow(nim[:,:,:3]/nim[:,:,:3].max(), origin='upper')
        return ax
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def plot_allsky_healpix(image, nside, fn, label = "", rotation = None,
                        take_log = True, resolution=512, cmin=None, cmax=None):
    import matplotlib.figure
    import matplotlib.backends.backend_agg
    if rotation is None: rotation = np.eye(3).astype("float64")

    img, count = pixelize_healpix(nside, image, resolution, resolution, rotation)

    fig = matplotlib.figure.Figure((10, 5))
    ax = fig.add_subplot(1,1,1,projection='aitoff')
    if take_log: func = np.log10
    else: func = lambda a: a
    implot = ax.imshow(func(img), extent=(-np.pi,np.pi,-np.pi/2,np.pi/2),
                       clip_on=False, aspect=0.5, vmin=cmin, vmax=cmax)
    cb = fig.colorbar(implot, orientation='horizontal')
    cb.set_label(label)
    ax.xaxis.set_ticks(())
    ax.yaxis.set_ticks(())
    canvas = matplotlib.backends.backend_agg.FigureCanvasAgg(fig)
    canvas.print_figure(fn)
    return img, count
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_2d(dataset, nbins, data, extra=None):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=2)
        rows, cols = nbins
        im = np.zeros(nbins)
        for i in xrange(rows):
            for j in xrange(cols):
                im[i,j] = ((data[:,0] == i) & (data[:,1] == j)).sum()
        plt.imshow(im, cmap='gray_r', interpolation='none')
        if extra is not None:
            dataset += extra
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_2d(dataset, nbins, data=None, extra=None):
    if data is None:
        data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-2:]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=2)
        rows, cols = nbins
        im = np.zeros(nbins)
        for i in xrange(rows):
            for j in xrange(cols):
                im[i,j] = ((data[:,0] == i) & (data[:,1] == j)).sum()
        plt.imshow(im, cmap='gray_r', interpolation='none')
        if extra is not None:
            dataset += extra
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def show_samples(y, ndim, nb=10, cmap=''):
    if ndim == 4:
        for i in range(nb**2):
            plt.subplot(nb, nb, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    else:
        x = y[0]
        y = y[1]
        plt.figure(0)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(x[i], cmap=cmap, interpolation='none')
            plt.axis('off')

        plt.figure(1)
        for i in range(10):
            plt.subplot(2, 5, i+1)
            plt.imshow(y[i], cmap=cmap, interpolation='none')
            plt.axis('off')

    plt.show()
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
项目:tf-tutorial    作者:zchen0211    | 项目源码 | 文件源码
def visualize_input(model):
  sess = tf.Session()
  sess.run(tf.global_variables_initializer())
  tf.train.start_queue_runners(sess=sess)

  batch_img, batch_cap = sess.run([model.images, model.input_seqs])
  # show first img
  batch_img = batch_img[0,:]
  batch_img = (batch_img + 1.) / 2.

  # show caption
  fid = open('/media/DATA/MS-COCO/word_counts.txt')
  raw_words = fid.readlines()
  words = []
  for raw_word in raw_words:
    word, _ = raw_word.split()
    words.append(word)
  batch_cap = batch_cap[0]
  sentence = []
  for tmp_id in batch_cap:
    sentence.append(words[int(tmp_id)])
  print(sentence)
  plt.imshow(batch_img)
  plt.show()
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def gen_aperture(imgsize,ypos,xpos,radius,pixval=1,showaperture=False,verbose=True):
    """
    Generating an aperture image

    --- INPUT ---
    imgsize       The dimensions of the array to return. Expects [y-size,x-size].
                  The aperture will be positioned in the center of a (+/-x-size/2., +/-y-size/2) sized array
    ypos          Pixel position in the y direction
    xpos          Pixel position in the x direction
    radius        Radius of aperture in pixels
    showaperture  Display image of generated aperture
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    apertureimg  = tu.gen_aperture([20,40],10,5,10,showaperture=True)
    apertureimg  = tu.gen_aperture([2000,4000],900,1700,150,showaperture=True)

    """
    if verbose: print ' - Generating aperture in image (2D array)'
    y , x    = np.ogrid[-ypos:imgsize[0]-ypos, -xpos:imgsize[1]-xpos]
    mask     = x*x + y*y <= radius**2.
    aperture = np.zeros(imgsize)

    if verbose: print ' - Assigning pixel value '+str(pixval)+' to aperture'
    aperture[mask] = pixval

    if showaperture:
        if verbose: print ' - Displaying resulting image of aperture'
        plt.imshow(aperture,interpolation='none')
        plt.title('Generated aperture')
        plt.show()

    return aperture
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def gen_overview_plot_image(ax,imagefile,imgext=0,cubelayer=1,title='Img Title?',fontsize=6,lthick=2,alpha=0.5,
                            cmap='coolwarm'):
    """
    Plotting commands for image (cube layer) overview plotting

    --- INPUT ---

    cubelayer     If the content of the file is a cube, provide the cube layer to plot. If
                    cubelayer = 'fmax' the layer with most flux is plotted

    """

    ax.set_title(title,fontsize=fontsize)
    if os.path.isfile(imagefile):
        imgdata = pyfits.open(imagefile)[imgext].data

        if len(imgdata.shape) == 3: # it is a cube
            imgdata = imgdata[cubelayer,:,:]

        ax.imshow(imgdata, interpolation='None',cmap=cmap,aspect='equal', origin='lower')

        ax.set_xlabel('x-pixel')
        ax.set_ylabel('y-pixel ')
        ax.set_xticks([])
        ax.set_yticks([])

    else:
        textstr = 'No image\nfound'
        ax.text(1.0,22,textstr,horizontalalignment='center',verticalalignment='center',fontsize=fontsize)

        ax.set_ylim([28,16])
        ax.plot([0.0,2.0],[28,16],'r--',lw=lthick)
        ax.plot([2.0,0.0],[28,16],'r--',lw=lthick)

        ax.set_xlabel(' ')
        ax.set_ylabel(' ')
        ax.set_xticks([])
        ax.set_yticks([])

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def residual_multigauss(param, dataimage, nonfinite = 0.0, ravelresidual=True, showimages=False, verbose=False):
    """
    Calculating the residual bestween the multigaussian model with the paramters 'param' and the data.

    --- INPUT ---
    param         Parameters of multi-gaussian model to generate. See modelimage_multigauss() header for details
    dataimage     Data image to take residual
    nonfinite     Value to replace non-finite entries in residual with
    ravelresidual To np.ravel() the residual image set this to True. Needed by scipy.optimize.leastsq()
                  optimizer function
    showimages    To show model and residiual images set to True
    verbose       Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_model_FoV as tmf
    param      = [18,31,1*0.3,2.1*0.3,1.2*0.3,30*0.3,    110,90,200*0.5,20.1*0.5,15.2*0.5,0*0.5]
    dataimg    = pyfits.open('/Users/kschmidt/work/TDOSE/mock_cube_sourcecat161213_tdose_mock_cube.fits')[0].data[0,:,:]
    residual   = tmf.residual_multigauss(param, dataimg, showimages=True)

    """
    if verbose: ' - Estimating residual (= model - data) between model and data image'
    imgsize      = dataimage.shape
    xgrid, ygrid = tu.gen_gridcomponents(imgsize)
    modelimg     = tmf.modelimage_multigauss((xgrid, ygrid),param,imgsize,showmodelimg=showimages, verbose=verbose)

    residualimg  = modelimg - dataimage

    if showimages:
        plt.imshow(residualimg,interpolation='none', vmin=1e-5, vmax=np.max(residualimg), norm=mpl.colors.LogNorm())
        plt.title('Resdiaul (= model - data) image')
        plt.show()

    if nonfinite is not None:
        residualimg[~np.isfinite(residualimg)] = 0.0

    if ravelresidual:
        residualimg = np.ravel(residualimg)

    return residualimg
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:iFruitFly    作者:AdnanMuhib    | 项目源码 | 文件源码
def imageSegmentor(imageFilePath, matFilePath):      


    mat = readMatFile(matFilePath);                                             # read mat file                                 
    image = getImage(imageFilePath);                                            # input the image
    typeOfFruit = getTypeOfFruit(image);                                        # on basis of counting or temperature value there are 2 types of fruit

    plt.imshow(image);

    _fft = getFFT(image);
    _mag = getMag(_fft);
    _ang = getAngleInDegrees(_fft);    

    edges = edgeDetector(image);                                                # detects the edges of the image
    _segmentation = segmentation(image, typeOfFruit);                           # segments different parts of image    
    filteredImage = filterImageFromSegmentation(image, _segmentation);          # filter the object part of image

    outputMatrix = imageMapping(filteredImage, mat['IR']);                      # map the value part of the image and else 0

    prefix =  re.split('IR_|.pgm', imageFilePath)[0];
    postfix = re.split('IR_|.pgm', imageFilePath)[1];    
    nameOfFile = prefix + "csv_" 
    nameOfFile = nameOfFile + postfix;
    print(nameOfFile);    
    writeToCSV(outputMatrix, nameOfFile);                                      # write it to the CSV file
    writeFF2CSV(outputMatrix, _mag, _ang, nameOfFile);  

    fig, ((fig1, fig2), (fig3, fig4)) = plt.subplots(2, 2, figsize = (10, 8));  # subplot the different plots
    fig1.imshow(image, cmap = plt.cm.gray);                                     # colormap used here is gray    
    fig2.imshow(image, cmap = plt.cm.gray); 
    fig3.imshow(edges, cmap = plt.cm.gray);
    fig4.imshow(filteredImage, cmap = plt.cm.gray);

    return

# header file
项目:uai2017_learning_to_acquire_information    作者:evanthebouncy    | 项目源码 | 文件源码
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
项目:uai2017_learning_to_acquire_information    作者:evanthebouncy    | 项目源码 | 文件源码
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
项目:uai2017_learning_to_acquire_information    作者:evanthebouncy    | 项目源码 | 文件源码
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
项目:POT    作者:rflamary    | 项目源码 | 文件源码
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True):
    spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False)
    bark_filters = int(np.ceil(freq2bark(sr//2)))
    wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters)
    '''
    plt.figure()
    plt.subplot(211)
    plt.imshow(wts)
    plt.subplot(212)
    plt.hold(True)
    for i in range(18):
        plt.plot(wts[i, :])
    plt.show()
    '''
    bark_spec = np.matmul(wts, spec)
    if do_rasta:
        bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec)
        log_bark_spec = np.log(bark_spec)
        rasta_log_bark_spec = rasta_filt(log_bark_spec)
        bark_spec = np.exp(rasta_log_bark_spec)
    post_spec = postaud(bark_spec, sr/2.)
    if plp_order > 0:
        lpcas = do_lpc(post_spec, plp_order)
        # lpcas = do_lpc(spec, plp_order) # just for test
    else:
        lpcas = post_spec
    return lpcas
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm.optimise(method='L-BFGS-B', maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_frey():
    # import dataset
    data = pods.datasets.brendan_faces()
    # Y = data['Y'][:50, :]
    Y = data['Y']
    Yn = Y - np.mean(Y, axis=0)
    Yn /= np.std(Y, axis=0)
    Y = Yn

    # inference
    print "inference ..."
    M = 30
    D = 20
    lvm = aep.SGPLVM(Y, D, M, lik='Gaussian')
    # lvm.train(alpha=0.5, no_epochs=10, n_per_mb=100, lrate=0.1, fixed_params=['sn'])
    lvm.optimise(method='L-BFGS-B', alpha=0.1, maxiter=10)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1])
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 20
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = x_mean.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def snapshot(self, fn = None, clip_ratio = None):
        import matplotlib.pylab as pylab
        pylab.figure(2)
        self.transfer_function.show()
        pylab.draw()
        im = Camera.snapshot(self, fn, clip_ratio)
        pylab.figure(1)
        pylab.imshow(im / im.max())
        pylab.draw()
        self.frames.append(im)
项目:segypy    作者:cultpenguin    | 项目源码 | 文件源码
def imageSegy(Data):
    """
    imageSegy(Data)
    Image segy Data
    """
    import matplotlib.pylab as plt
    plt.imshow(Data)
    plt.title('pymat test')
    plt.grid(True)
    plt.show()

#%%
项目:seqrnns    作者:x75    | 项目源码 | 文件源码
def draw_heatmap(xedges, yedges, heatmap):
  extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
  plt.figure(figsize=(8, 8))
  plt.imshow(heatmap, extent=extent)
  plt.show()
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def animate(y, ndim, cmap) :
    plt.ion()

    if ndim == 5:
        plt.figure()
        plt.show()
        for i in range(y.shape[1]) :
            print "Showing batch", i
            plt.close('all')
            for j in range(y.shape[0]) :
                plt.imshow(y[j,i], interpolation='none', cmap=cmap)
                plt.pause(0.1)

            time.sleep(1)
    else:
        for i in range(y.shape[1]) :
            print "Showing batch", i
            plt.close('all')
            for j in range(y.shape[0]) :
                plt.figure(0)
                plt.imshow(y[j,i], interpolation='none', cmap=cmap)
                plt.figure(1)
                plt.imshow(x[j,i], interpolation='none', cmap=cmap)
                plt.pause(0.2)

            time.sleep(1)
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def fancy_show(y, cmap=''):
    x = y[0]
    y = y[1]

    plt.figure(0)
    for i in range(100):
        plt.subplot(10, 10, i+1)
        plt.imshow(x[i], cmap=cmap, interpolation='none')
        plt.axis('off')
    plt.figure(1)
    for i in range(100):
        plt.subplot(10, 10, i+1)
        plt.imshow(y[i], cmap=cmap, interpolation='none')
        plt.axis('off')
    plt.show()
项目:TemporalConvolutionalNetworks    作者:colincsl    | 项目源码 | 文件源码
def imshow_(x, **kwargs):
    if x.ndim == 2:
        plt.imshow(x, interpolation="nearest", **kwargs)
    elif x.ndim == 1:
        plt.imshow(x[:,None].T, interpolation="nearest", **kwargs)
        plt.yticks([])
    plt.axis("tight")

# ------------- Data -------------
项目:ip-avsr    作者:lzuwei    | 项目源码 | 文件源码
def show_image(data, shape, order='f', cmap=cm.gray):
    """
    display an image from a 1d vector
    :param data: 1d vector containing image information
    :param shape: actual image dimensions
    :param order: 'c' or 'f'
    :param cmap: colour map, defaults to grayscale
    :return:
    """
    img = data.reshape(shape, order=order)
    plt.imshow(img, cmap=cmap)
    plt.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotImgPatchPrototypes(doShowNow=True):
    from matplotlib import pylab
    pylab.figure()
    for kk in range(K):
        pylab.subplot(2, 4, kk + 1)
        Xp = makeImgPatchPrototype(D, kk)
        pylab.imshow(Xp, interpolation='nearest')
    if doShowNow:
        pylab.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotTrueCovMats(doShowNow=True):
    from matplotlib import pylab
    pylab.figure()
    for kk in range(K):
        pylab.subplot(2, 4, kk + 1)
        pylab.imshow(Sigma[kk], interpolation='nearest')
    if doShowNow:
        pylab.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotBlackWhiteStateSeqForMeeting(meetingNum=1, badUIDs=[-1, -2],
                                     **kwargs):
    ''' Make plot like in Fig. 3 of AOAS paper
    '''
    from matplotlib import pylab

    Data = get_data(meetingNum=args.meetingNum)
    Z = np.asarray(Data.TrueParams['Z'], dtype=np.int32)

    uLabels = np.unique(Z)
    uLabels = np.asarray([u for u in uLabels if u not in badUIDs])
    sizes = np.asarray([np.sum(Z == u) for u in uLabels])
    sortIDs = np.argsort(-1 * sizes)
    Zim = np.zeros((10, Z.size))
    for rankID, uID in enumerate(uLabels[sortIDs]):
        Zim[1 + rankID, Z == uID] = 1
        size = sizes[sortIDs[rankID]]
        frac = size / float(Z.size)
        print 'state %3d: %5d tsteps (%.3f)' % (rankID + 1, size, frac)

    for uID in badUIDs:
        size = np.sum(Z == uID)
        frac = size / float(Z.size)
        print 'state %3d: %5d tsteps (%.3f)' % (uID, size, frac)

    pylab.imshow(1 - Zim,
                 interpolation='nearest',
                 aspect=Zim.shape[1] / float(Zim.shape[0]) / 3,
                 cmap='bone',
                 vmin=0,
                 vmax=1,
                 origin='lower')
    pylab.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def MakePlans(Data, model, LP, Q=None, **kwargs):
    ''' Create list of Plans
    '''
    newTopics, Info = makeCandidateTopics(Data, Q, model, LP, **kwargs)
    if 'doVizBirth' in kwargs and kwargs['doVizBirth']:
        from matplotlib import pylab
        pylab.imshow(newTopics, vmin=0, vmax=0.01,
                     aspect=Data.vocab_size / newTopics.shape[0],
                     interpolation='nearest')
    Plans = list()
    for kk in xrange(newTopics.shape[0]):
        Plan = dict(ktarget=None, Data=None, targetWordIDs=None,
                    targetWordFreq=newTopics[kk])

        # Add material to the log
        topWords = np.argsort(-1 * Plan['targetWordFreq'])[:10]
        if hasattr(Data, 'vocab_dict'):
            Vocab = getVocab(Data)
            topWordStr = ' '.join([Vocab[w] for w in topWords])
        else:
            topWordStr = ' '.join([str(w) for w in topWords])
        Plan['log'] = list()
        Plan['topWordIDs'] = topWords
        Plan['log'].append(topWordStr)

        if 'anchorID' in Info:
            anchorWordStr = 'Anchor: ' + str(Info['anchorID'][kk])
            Plan['anchorWordID'] = anchorWordStr
            Plan['log'].append(anchorWordStr)
        Plans.append(Plan)
    return Plans
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def roll_2Dprofile(profile,position,padvalue=0.0,showprofiles=False):
    """
    Move 2D profile to given position in array by rolling it in x and y.
    Note that the roll does not handle sub-pixel moves.
    tu.shift_2Dprofile() does this using interpolation

    --- INPUT ---
    profile         profile to shift
    position        position to move center of image (profile) to:  [ypos,xpos]
    padvalue        the values to padd the images with when shifting profile
    showprofiles    Show profile when shifted?

    --- EXAMPLE OF USE ---
    tu.roll_2Dprofile(gauss2D,)

    """
    profile_dim = profile.shape

    yroll = np.int(np.round(position[0]-profile_dim[0]/2.))
    xroll = np.int(np.round(position[1]-profile_dim[1]/2.))
    profile_shifted = np.roll(np.roll(profile,yroll,axis=0),xroll,axis=1)

    if showprofiles:
        vmaxval = np.max(profile_shifted)
        plt.imshow(profile_shifted,interpolation='none',vmin=-vmaxval, vmax=vmaxval)
        plt.title('Positioned Source')
        plt.show()

    if yroll < 0:
        profile_shifted[yroll:,:] = padvalue
    else:
        profile_shifted[:yroll,:] = padvalue

    if xroll < 0:
        profile_shifted[:,xroll:] = padvalue
    else:
        profile_shifted[:,:xroll] = padvalue

    if showprofiles:
        plt.imshow(profile_shifted,interpolation='none',vmin=-vmaxval, vmax=vmaxval)
        plt.title('Positioned Source with 0s inserted')
        plt.show()

    return profile_shifted
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def optimize_img_scale(img_data,img_std,img_model,optimizer='curve_fit',show_residualimg=False,verbose=True):
    """
    optimize the (flux) scaling of an image with respect to a (noisy) data image

    --- INPUT ---
    img_data            The (noisy) data image to scale model image provide in img_model to
    img_std             Standard deviation image for data to use in optimization
    img_model           Model image to (flux) scale to match img_data
    optimizer           The optimizer to use when scaling the layers
    show_residualimg    To show the residual image (data - model) for the optimize layers, set this to true
    verbose             Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_model_cube as tmc
    scale, cov = tmc.optimize_img_scale()

    """
    if verbose: print ' - Optimize residual between model (multiple Gaussians) and data with least squares in 2D'
    if verbose: print '   ----------- Started on '+tu.get_now_string()+' ----------- '
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    if optimizer == 'leastsq':
        sys.exit('optimizer = "leastsq" no enabled')
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    elif optimizer == 'curve_fit':
        imgsize                = img_data.shape
        xgrid, ygrid           = tu.gen_gridcomponents(imgsize)
        scale_best, scale_cov  = opt.curve_fit(lambda (xgrid, ygrid), scale:
                                               tmc.curve_fit_fct_wrapper_imgscale((xgrid, ygrid), scale, img_model),
                                               (xgrid, ygrid),
                                               img_data.ravel(), p0 = [1.0], sigma=img_std.ravel() )

        output = scale_best, scale_cov
    else:
        sys.exit(' ---> Invalid optimizer ('+optimizer+') chosen in optimize_img_scale()')
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    if verbose: print '   ----------- Finished on '+tu.get_now_string()+' ----------- '
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    if show_residualimg:
        if verbose: print ' - Displaying the residual image between data and scaled model image '
        res_img  = img_model-img_data
        plt.imshow(res_img,interpolation='none', vmin=1e-5, vmax=np.max(res_img), norm=mpl.colors.LogNorm())
        plt.title('Initial Residual = Initial Model Image - Data Image')
        plt.show()

        res_img  = img_model*scale_best-img_data
        plt.imshow(res_img,interpolation='none', vmin=1e-5, vmax=np.max(res_img), norm=mpl.colors.LogNorm())
        plt.title('Best Residual = Scaled (by '+str(scale_best)+') Model Image - Data Image')
        plt.show()
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    return output
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_mnist():
    np.random.seed(42)

    # import dataset
    f = gzip.open('./tmp/data/mnist.pkl.gz', 'rb')
    (x_train, t_train), (x_valid, t_valid), (x_test, t_test) = cPickle.load(f)
    f.close()

    Y = x_train[:100, :]
    labels = t_train[:100]

    Y[Y < 0.5] = -1
    Y[Y > 0.5] = 1

    # inference
    print "inference ..."
    M = 30
    D = 2
    # lvm = vfe.SGPLVM(Y, D, M, lik='Gaussian')
    lvm = vfe.SGPLVM(Y, D, M, lik='Probit')
    # lvm.train(alpha=0.5, no_epochs=10, n_per_mb=100, lrate=0.1, fixed_params=['sn'])
    lvm.optimise(method='L-BFGS-B')
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1], c=labels)
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 28
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            t = x_mean / np.sqrt(1 + x_var)
            Z = 0.5 * (1 + special.erf(t / np.sqrt(2)))
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = Z.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_model_no_control(model, plot_title='', name_suffix=''):
    # plot function
    mx, vx = model.get_posterior_x()
    mins = np.min(mx, axis=0) - 0.5
    maxs = np.max(mx, axis=0) + 0.5
    nGrid = 50
    xspaced = np.linspace(mins[0], maxs[0], nGrid)
    yspaced = np.linspace(mins[1], maxs[1], nGrid)
    xx, yy = np.meshgrid(xspaced, yspaced)
    Xplot = np.vstack((xx.flatten(), yy.flatten())).T
    mf, vf = model.predict_f(Xplot)
    fig = plt.figure()
    plt.imshow((mf[:, 0]).reshape(*xx.shape),
               vmin=mf.min(), vmax=mf.max(), origin='lower',
               extent=[mins[0], maxs[0], mins[1], maxs[1]], aspect='auto')
    plt.colorbar()
    plt.contour(
        xx, yy, (mf[:, 0]).reshape(*xx.shape),
        colors='k', linewidths=2, zorder=100)
    zu = model.dyn_layer.zu
    plt.plot(zu[:, 0], zu[:, 1], 'wo', mew=0, ms=4)
    for i in range(mx.shape[0] - 1):
        plt.plot(mx[i:i + 2, 0], mx[i:i + 2, 1],
                 '-bo', ms=3, linewidth=2, zorder=101)
    plt.xlabel(r'$x_{t, 1}$')
    plt.ylabel(r'$x_{t, 2}$')
    plt.xlim([mins[0], maxs[0]])
    plt.ylim([mins[1], maxs[1]])
    plt.title(plot_title)
    plt.savefig('/tmp/hh_gpssm_dim_0' + name_suffix + '.pdf')

    fig = plt.figure()
    plt.imshow((mf[:, 1]).reshape(*xx.shape),
               vmin=mf.min(), vmax=mf.max(), origin='lower',
               extent=[mins[0], maxs[0], mins[1], maxs[1]], aspect='auto')
    plt.colorbar()
    plt.contour(
        xx, yy, (mf[:, 1]).reshape(*xx.shape),
        colors='k', linewidths=2, zorder=100)
    zu = model.dyn_layer.zu
    plt.plot(zu[:, 0], zu[:, 1], 'wo', mew=0, ms=4)
    for i in range(mx.shape[0] - 1):
        plt.plot(mx[i:i + 2, 0], mx[i:i + 2, 1],
                 '-bo', ms=3, linewidth=2, zorder=101)
    plt.xlabel(r'$x_{t, 1}$')
    plt.ylabel(r'$x_{t, 2}$')
    plt.xlim([mins[0], maxs[0]])
    plt.ylim([mins[1], maxs[1]])
    plt.title(plot_title)
    plt.savefig('/tmp/hh_gpssm_dim_1' + name_suffix + '.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_mnist():
    np.random.seed(42)

    # import dataset
    f = gzip.open('./tmp/data/mnist.pkl.gz', 'rb')
    (x_train, t_train), (x_valid, t_valid), (x_test, t_test) = cPickle.load(f)
    f.close()

    Y = x_train[:100, :]
    labels = t_train[:100]

    Y[Y < 0.5] = -1
    Y[Y > 0.5] = 1

    # inference
    print "inference ..."
    M = 30
    D = 2
    # lvm = aep.SGPLVM(Y, D, M, lik='Gaussian')
    lvm = aep.SGPLVM(Y, D, M, lik='Probit')
    # lvm.train(alpha=0.5, no_epochs=10, n_per_mb=100, lrate=0.1, fixed_params=['sn'])
    lvm.optimise(method='L-BFGS-B', alpha=0.1)
    plt.figure()
    mx, vx = lvm.get_posterior_x()
    zu = lvm.sgp_layer.zu
    plt.scatter(mx[:, 0], mx[:, 1], c=labels)
    plt.plot(zu[:, 0], zu[:, 1], 'ko')

    nx = ny = 30
    x_values = np.linspace(-5, 5, nx)
    y_values = np.linspace(-5, 5, ny)
    sx = 28
    sy = 28
    canvas = np.empty((sx * ny, sy * nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean, x_var = lvm.predict_f(z_mu)
            t = x_mean / np.sqrt(1 + x_var)
            Z = 0.5 * (1 + special.erf(t / np.sqrt(2)))
            canvas[(nx - i - 1) * sx:(nx - i) * sx, j *
                   sy:(j + 1) * sy] = Z.reshape(sx, sy)

    plt.figure(figsize=(8, 10))
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper", cmap="gray")
    plt.tight_layout()

    plt.show()
项目:turbo_seti    作者:UCBerkeleySETI    | 项目源码 | 文件源码
def plot_waterfall(fil, f_start=None, f_stop=None, if_id=0, logged=True,cb=False,freq_label=False,MJD_time=False, **kwargs):
    """ Plot waterfall of data

    Args:
        f_start (float): start frequency, in MHz
        f_stop (float): stop frequency, in MHz
        logged (bool): Plot in linear (False) or dB units (True),
        cb (bool): for plotting the colorbar
        kwargs: keyword args to be passed to matplotlib imshow()
    """

    matplotlib.rc('font', **font)

    plot_f, plot_data = fil.grab_data(f_start, f_stop, if_id)

    # Make sure waterfall plot is under 4k*4k
    dec_fac_x, dec_fac_y = 1, 1
    if plot_data.shape[0] > MAX_IMSHOW_POINTS[0]:
        dec_fac_x = plot_data.shape[0] / MAX_IMSHOW_POINTS[0]

    if plot_data.shape[1] > MAX_IMSHOW_POINTS[1]:
        dec_fac_y =  plot_data.shape[1] /  MAX_IMSHOW_POINTS[1]

    plot_data = rebin(plot_data, dec_fac_x, dec_fac_y)

    if MJD_time:
        extent=(plot_f[0], plot_f[-1], fil.timestamps[-1], fil.timestamps[0])
    else:
        extent=(plot_f[0], plot_f[-1], (fil.timestamps[-1]-fil.timestamps[0])*24.*60.*60, 0.0)

    this_plot = plt.imshow(plot_data,
        aspect='auto',
        rasterized=True,
        interpolation='nearest',
        extent=extent,
        cmap='viridis_r',
        **kwargs
    )
    if cb:
        plt.colorbar()

    if freq_label:
        plt.xlabel("Frequency [Hz]",fontdict=font)
    if MJD_time:
        plt.ylabel("Time [MJD]",fontdict=font)
    else:
        plt.ylabel("Time [s]",fontdict=font)

    return this_plot