Python matplotlib.pylab 模块,xlim() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pylab.xlim()

项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_2(self, mod, species, xlim1, xlim2):

        """
        Plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.

        """

        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass,Xspecies,'-',label=str(mod)+', '+species)
        pyl.xlim(xlim1,xlim2)
        pyl.legend()
项目:TSS_detection    作者:ueser    | 项目源码 | 文件源码
def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh):
    fig=pl.figure()
    ## To plot and save
    pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5);
    pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red');
    pl.hlines(-np.log10(0.05),min(logFC),max(logFC))
    pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.xlim(-3,3)
    pl.xlabel('Log Fold Change')
    pl.ylabel('-log10(p-value)')
    pl.savefig(saveName)
    pl.close(fig)


# def plot_histograms(df_peaks,pntr_list):
#
#     for pntr in pntr_list:
#         colName =pntr[2]+'_Intragenic_position'
#         pl.hist(df_peaks[colName])
#         pl.xlabel(colName)
#         pl.ylabel()
#         pl.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot(m, Xtrain, ytrain):
    xx = np.linspace(-0.5, 1.5, 100)[:, None]
    mean, var = m.predict_y(xx)
    mean = np.reshape(mean, (xx.shape[0], 1))
    var = np.reshape(var, (xx.shape[0], 1))
    if isinstance(m, aep.SDGPR):
        zu = m.sgp_layers[0].zu
    elif isinstance(m, vfe.SGPR_collapsed):
        zu = m.zu
    else:
        zu = m.sgp_layer.zu
    mean_u, var_u = m.predict_f(zu)
    plt.figure()
    plt.plot(Xtrain, ytrain, 'kx', mew=2)
    plt.plot(xx, mean, 'b', lw=2)
    # pdb.set_trace()
    plt.fill_between(
        xx[:, 0],
        mean[:, 0] - 2 * np.sqrt(var[:, 0]),
        mean[:, 0] + 2 * np.sqrt(var[:, 0]),
        color='blue', alpha=0.2)
    plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
    plt.xlim(-0.1, 1.1)
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_plot_error_ellipse(self):
        # Generate random data
        x = np.random.normal(0, 1, 300)
        s = np.array([2.0, 2.0])
        y1 = np.random.normal(s[0] * x)
        y2 = np.random.normal(s[1] * x)
        data = np.array([y1, y2])

        # Calculate covariance and plot error ellipse
        cov = np.cov(data)
        plot_error_ellipse([0.0, 0.0], cov)

        debug = False
        if debug:
            plt.scatter(data[0, :], data[1, :])
            plt.xlim([-8, 8])
            plt.ylim([-8, 8])
            plt.show()
        plt.clf()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins, data):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins):
    data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotLine(self, x_vals, y_vals, x_label, y_label, title, filename=None):
        plt.clf()

        plt.xlabel(x_label)
        plt.xlim(((min(x_vals) - 0.5), (max(x_vals) + 0.5)))
        plt.ylabel(y_label)
        plt.ylim(((min(y_vals) - 0.5), (max(y_vals) + 0.5)))

        plt.title(title)
        plt.plot(x_vals, y_vals, c='k', lw=2)
        #plt.plot(x_vals, len(x_vals) * y_vals[0], c='r', lw=2)

        if filename == None:
            plt.show()
        else:
            plt.savefig(self.outputPath + filename)
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
    pylab.figure(num=None, figsize=(8, 6))
    if km:
        pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
    else:
        pylab.scatter(x, y, s=50)

    pylab.title(title)
    pylab.xlabel("Occurrence word 1")
    pylab.ylabel("Occurrence word 2")

    pylab.autoscale(tight=True)
    pylab.ylim(ymin=0, ymax=1)
    pylab.xlim(xmin=0, xmax=1)
    pylab.grid(True, linestyle='-', color='0.75')

    return pylab
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
项目:ml_sampler    作者:facebookincubator    | 项目源码 | 文件源码
def plot_roc(y_test, y_pred, label=''):
    """Compute ROC curve and ROC area"""

    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)

    # Plot of a ROC curve for a specific class
    plt.figure()
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic' + label)
    plt.legend(loc="lower right")
    plt.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotSpeedupFigure(AllInfo, maxWorker=1, **kwargs):
    pylab.figure(2)
    xs = AllInfo['nWorker']
    ts_mono = AllInfo['t_monolithic']

    xgrid = np.linspace(0, maxWorker + 0.1, 100)
    pylab.plot(xgrid, xgrid, 'y--', label='ideal parallel')

    for method in getMethodNames(**kwargs):
        speedupRatio = ts_mono / AllInfo['t_' + method]
        pylab.plot(xs, speedupRatio, 'o-',
                   label=method,
                   color=ColorMap[method],
                   markeredgecolor=ColorMap[method])

    pylab.xlim([-0.2, maxWorker + 0.5])
    pylab.ylim([0, maxWorker + 0.5])
    pylab.legend(loc='upper left')
    pylab.xlabel('Number of Workers')
    pylab.ylabel('Speedup over Monolithic')
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotBoundVsAlph(alphaVals=np.linspace(.001, 3, 1000),
                    beta1=0.5):
    exactVals = cD_exact(alphaVals, beta1)
    boundVals = cD_bound(alphaVals, beta1)

    assert np.all(exactVals >= boundVals)
    pylab.plot(alphaVals, exactVals, 'k-', linewidth=LINEWIDTH)
    pylab.plot(alphaVals, boundVals, 'r--', linewidth=LINEWIDTH)
    pylab.xlabel("alpha", fontsize=FONTSIZE)
    pylab.ylabel("  ", fontsize=FONTSIZE)
    pylab.xlim([np.min(alphaVals) - 0.1, np.max(alphaVals) + 0.1])
    pylab.ylim([np.min(exactVals) - 0.05, np.max(exactVals) + 0.05])
    pylab.xticks(np.arange(np.max(alphaVals) + 1))

    pylab.legend(['c_D exact',
                  'c_D surrogate'],
                 fontsize=LEGENDSIZE,
                 loc='lower right')
    pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def showExampleDocs(pylab=None, nrows=3, ncols=3):
    if pylab is None:
        from matplotlib import pylab
    Data = get_data(seed=0, nObsPerDoc=200)
    PRNG = np.random.RandomState(0)
    chosenDocs = PRNG.choice(Data.nDoc, nrows * ncols, replace=False)
    for ii, d in enumerate(chosenDocs):
        start = Data.doc_range[d]
        stop = Data.doc_range[d + 1]
        Xd = Data.X[start:stop]
        pylab.subplot(nrows, ncols, ii + 1)
        pylab.plot(Xd[:, 0], Xd[:, 1], 'k.')
        pylab.axis('image')
        pylab.xlim([-1.5, 1.5])
        pylab.ylim([-1.5, 1.5])
        pylab.xticks([])
        pylab.yticks([])
    pylab.tight_layout()
# Set Toy Parameters
###########################################################
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def _xlimrev(self):
        ''' reverse xrange'''
        xmax,xmin=pyl.xlim()
        pyl.xlim(xmin,xmax)
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_1(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                    symbol=None):
        """
        plot one species for cycle between xlim1 and xlim2

        Parameters
        ----------
        mod : string or integer
            Model to plot, same as cycle number.
        species : list
            Which species to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        symbol : string, optional
            Which symbol you want to use.  If None symbol is set to '-'.
            The default is None.

        """
        DataPlot.plot_prof_1(self,species,mod,xlim1,xlim2,ylim1,ylim2,symbol)
        """
        tot_mass=self.se.get(mod,'total_mass')
        age=self.se.get(mod,'age')
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'iso_massf',species)
        pyl.plot(mass,np.log10(Xspecies),'-',label=species)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()

        pl.xlabel('$Mass$ $coordinate$', fontsize=20)
        pl.ylabel('$X_{i}$', fontsize=20)
        pl.title('Mass='+str(tot_mass)+', Time='+str(age)+' years, cycle='+str(mod))
        """
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_sparse(self, mod, species, xlim1, xlim2, ylim1, ylim2,
                         sparse, symbol):

        """
        plot one species for cycle between xlim1 and xlim2.

        Parameters
        ----------
        species : list
            which species to plot.
        mod : string or integer
            Model (cycle) to plot.
        xlim1, xlim2 : float
            Mass coordinate range.
        ylim1, ylim2 : float
            Mass fraction coordinate range.
        sparse : integer
            Sparsity factor for points.
        symbol : string
            which symbol you want to use?

        """
        mass=self.se.get(mod,'mass')
        Xspecies=self.se.get(mod,'yps',species)
        pyl.plot(mass[0:len(mass):sparse],np.log10(Xspecies[0:len(Xspecies):sparse]),symbol)
        pyl.xlim(xlim1,xlim2)
        pyl.ylim(ylim1,ylim2)
        pyl.legend()
项目:POT    作者:rflamary    | 项目源码 | 文件源码
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def generate_box_plot(dataset, methods, position_rmses, orientation_rmses):

  num_methods = len(methods)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.3 / num_methods
  spacing = 0.3 / num_methods
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('RMSE position [m]', color='b')
  ax1.tick_params('y', colors='b')
  fig.suptitle(
      "Hand-Eye Calibration Method Error {}".format(dataset), fontsize='24')
  bp_position = ax1.boxplot(position_rmses, 0, '',
                            positions=x_ticks - spacing, widths=width)
  plt.setp(bp_position['boxes'], color='blue', linewidth=line_width)
  plt.setp(bp_position['whiskers'], color='blue', linewidth=line_width)
  plt.setp(bp_position['fliers'], color='blue',
           marker='+', linewidth=line_width)
  plt.setp(bp_position['caps'], color='blue', linewidth=line_width)
  plt.setp(bp_position['medians'], color='blue', linewidth=line_width)
  ax2 = ax1.twinx()
  ax2.set_ylabel('RMSE Orientation [$^\circ$]', color='g')
  ax2.tick_params('y', colors='g')
  bp_orientation = ax2.boxplot(
      orientation_rmses, 0, '', positions=x_ticks + spacing, widths=width)
  plt.setp(bp_orientation['boxes'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['whiskers'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['fliers'], color='green',
           marker='+')
  plt.setp(bp_orientation['caps'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['medians'], color='green', linewidth=line_width)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing, x_ticks[-1] + 2.5 * spacing)

  plt.show()
项目:hand_eye_calibration    作者:ethz-asl    | 项目源码 | 文件源码
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
  num_methods = len(methods)
  num_datasets = len(datasets)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.6 / num_methods / num_datasets
  spacing = 0.4 / num_methods / num_datasets
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('Time [s]', color='b')
  ax1.tick_params('y', colors='b')
  ax1.set_yscale('log')
  fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
  handles = []
  for i, dataset in enumerate(datasets):
    runtimes = [runtimes_per_method[dataset][method] for method in methods]
    bp = ax1.boxplot(
        runtimes, 0, '',
        positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
                   spacing * 2),
        widths=width)
    plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
    plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
    plt.setp(bp['fliers'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['medians'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
    handles.append(mpatches.Patch(color=colors[i], label=dataset))
  plt.legend(handles=handles, loc=2)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
           x_ticks[-1] + 2.5 * spacing * num_datasets)

  plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        # mean, var = m.predict_f(xx)
        samples, mf, vf = m.predict_f(xx, config.PROP_MC)
        zu = m.sgp_layers[0].zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        # plt.plot(xx, mean, 'b', lw=2)
        # plt.fill_between(
        #     xx[:, 0],
        #     mean[:, 0] - 2 * np.sqrt(var[:, 0]),
        #     mean[:, 0] + 2 * np.sqrt(var[:, 0]),
        #     color='blue', alpha=0.2)
        plt.plot(np.tile(xx[np.newaxis, :], [200, 1]))
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    hidden_size = [2]
    model = aep.SDGPR(X, Y, M, hidden_size, lik='Gaussian')
    model.optimise(method='L-BFGS-B', alpha=1, maxiter=2000)
    plot(model)
    # plt.show()
    plt.savefig('/tmp/aep_dgpr_1D.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_stoc():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layers[0].zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    hidden_size = [2]
    model = aep.SDGPR(X, Y, M, hidden_size, lik='Gaussian')
    model.optimise(method='adam', alpha=1.0,
                   maxiter=50000, mb_size=M, adam_lr=0.001)
    plot(model)
    plt.show()
    plt.savefig('/tmp/aep_dgpr_1D_stoc.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_step_1D_collapsed():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1) * 3 - 1.5
    Y = step(X)
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-3, 3, 100)[:, None]
        mean, var = m.predict_f(xx, alpha)
        zu = m.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var),
            mean[:, 0] + 2 * np.sqrt(var),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        # no_samples = 20
        # f_samples = m.sample_f(xx, no_samples)
        # for i in range(no_samples):
        #   plt.plot(xx, f_samples[:, :, i], linewidth=0.5, alpha=0.5)
        plt.xlim(-3, 3)

    # inference
    print "create model and optimize ..."
    M = 20
    alpha = 0.01
    model = vfe.SGPR_collapsed(X, Y, M)
    model.optimise(method='L-BFGS-B', alpha=alpha, maxiter=1000)
    plot(model)
    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D(nat_param=True):
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    model = vfe.SGPR(X, Y, M, lik='Gaussian', nat_param=nat_param)
    model.optimise(method='L-BFGS-B', maxiter=20000)
    # model.optimise(method='adam', adam_lr=0.05, maxiter=2000)
    plot(model)
    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_step_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1) * 3 - 1.5
    Y = step(X)
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-3, 3, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')

        no_samples = 20
        xx = np.linspace(-3, 3, 500)[:, None]
        f_samples = m.sample_f(xx, no_samples)
        for i in range(no_samples):
            plt.plot(xx, f_samples[:, :, i], linewidth=0.5, alpha=0.5)

        plt.xlim(-3, 3)

    # inference
    print "create model and optimize ..."
    M = 20
    model = vfe.SGPR(X, Y, M, lik='Gaussian')
    model.optimise(method='L-BFGS-B', maxiter=2000)
    plot(model)
    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_stoc():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-1.5, 2.5, 200)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    model = vfe.SGPR(X, Y, M, lik='Gaussian')
    model.optimise(method='adam', 
                   maxiter=100000, mb_size=N, adam_lr=0.001)
    # plot(model)
    # plt.show()
    # plt.savefig('/tmp/vfe_gpr_1D_stoc.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_stoc():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    model = aep.SGPR(X, Y, M, lik='Gaussian')
    model.optimise(method='adam', alpha=0.1,
                   maxiter=100000, mb_size=M, adam_lr=0.001)
    plot(model)
    plt.show()
    plt.savefig('/tmp/aep_gpr_1D_stoc.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_step_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1) * 3 - 1.5
    Y = step(X)
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-3, 3, 100)[:, None]
        mean, var = m.predict_y(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')

        no_samples = 20
        xx = np.linspace(-3, 3, 500)[:, None]
        f_samples = m.sample_f(xx, no_samples)
        for i in range(no_samples):
            plt.plot(xx, f_samples[:, :, i], linewidth=0.5, alpha=0.5)

        plt.xlim(-3, 3)

    # inference
    print "create model and optimize ..."
    M = 20
    model = aep.SGPR(X, Y, M, lik='Gaussian')
    model.optimise(method='L-BFGS-B', alpha=0.9, maxiter=2000)
    plot(model)
    plt.savefig('/tmp/aep_gpr_step.pdf')
    # plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_pep_training(stoc=False):
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    alpha = 0.1
    model_pep = pep.SGPR_rank_one(X, Y, M, lik='Gaussian')
    if stoc:
        mb_size = M
        fname = '/tmp/gpr_pep_reg_stoc.pdf'
        adam_lr = 0.005
    else:
        mb_size = N
        fname = '/tmp/gpr_pep_reg.pdf'
        adam_lr = 0.05
    model_pep.optimise(method='adam', mb_size=mb_size, adam_lr=adam_lr, alpha=alpha, maxiter=2000)
    plot(model_pep)
    plt.savefig(fname)
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layers[0].zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    hidden_size = [2]
    model = aep.SDGPR_H(X, Y, M, hidden_size, lik='Gaussian')
    model.optimise(method='L-BFGS-B', alpha=0.5, maxiter=2000)
    plot(model)
    plt.show()
    plt.savefig('/tmp/aep_dgpr_1D.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_stoc():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layers[0].zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    hidden_size = [2]
    model = aep.SDGPR(X, Y, M, hidden_size, lik='Gaussian')
    model.optimise(method='adam', alpha=1.0,
                   maxiter=50000, mb_size=M, adam_lr=0.001)
    plot(model)
    plt.show()
    plt.savefig('/tmp/aep_dgpr_1D_stoc.pdf')
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):

    """
    Plot a radiallysymmetric Q model.

    plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):

    r_min=minimum radius [km], r_max=maximum radius [km], dr=radius increment [km]

    Currently available models (model): cem, prem, ql6
    """

    r = np.arange(r_min, r_max+dr, dr)
    q = np.zeros(len(r))

    for k in range(len(r)):

        if model=='cem':
            q[k]=q_cem(r[k])
        elif model=='ql6':
            q[k]=q_ql6(r[k])
        elif model=='prem':
            q[k]=q_prem(r[k])


    plt.plot(r,q,'k')
    plt.xlim((0.0,r_max))
    plt.xlabel('radius [km]')
    plt.ylabel('Q')
    plt.show()


###################################################################################################
#- CEM, EUMOD
###################################################################################################
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_pr(auc_score, name, phase, precision, recall, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.plot(recall, precision, lw=1)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label))
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" %
                  (filename, phase)), bbox_inches="tight")
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_roc(auc_score, name, fpr, tpr):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % (
        auc_score, name))
    pylab.legend(loc="lower right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.fill_between(tpr, fpr, alpha=0.5)
    pylab.plot(fpr, tpr, lw=1)
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_") + ".png"))
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_pr(auc_score, name, precision, recall, label=None):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.plot(recall, precision, lw=1)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_" + filename + ".png"))
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_roc(auc_score, name, fpr, tpr):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % (
        auc_score, name))
    pylab.legend(loc="lower right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.fill_between(tpr, fpr, alpha=0.5)
    pylab.plot(fpr, tpr, lw=1)
    pylab.savefig(os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_")+ ".png"))
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_pr(auc_score, name, precision, recall, label=None):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.plot(recall, precision, lw=1)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_" + filename + ".png"))
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_roc(auc_score, name, fpr, tpr):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % (
        auc_score, name))
    pylab.legend(loc="lower right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.fill_between(tpr, fpr, alpha=0.5)
    pylab.plot(fpr, tpr, lw=1)
    pylab.savefig(os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_")+ ".png"))
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_pr(auc_score, name, precision, recall, label=None):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.plot(recall, precision, lw=1)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_" + filename + ".png"))
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plot_entropy_vs_rVals(self):
        if not doViz:
            self.skipTest("Required module matplotlib unavailable.")
        H = np.sum(calcRlogR(self.R), axis=1)
        Hnew_exact = np.sum(calcRlogR(self.Rnew_Exact), axis=1)
        Hnew_approx = np.sum(calcRlogR(self.Rnew_Approx), axis=1)

        rVals = self.rVals

        np.set_printoptions(precision=4, suppress=True)
        print ''
        print '--- rVals'
        print rVals[:3], rVals[-3:]

        print '--- R original'
        print self.R[:3]
        print self.R[-3:, :]

        print '--- R proposal'
        print self.Rnew_Exact[:3]
        print self.Rnew_Exact[-3:, :]

        pylab.plot(rVals, H, 'k-', label='H original')
        pylab.plot(rVals, Hnew_exact, 'b-', label='H proposal exact')
        pylab.plot(rVals, Hnew_approx, 'r-', label='H proposal approx')
        pylab.legend(loc='best')
        pylab.xlim([rVals.min() - .01, rVals.max() + .01])
        ybuf = 0.05 * H.max()
        pylab.ylim([ybuf, H.max() + ybuf])
        pylab.show(block=True)
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotSpeedupFigure(AllInfo, maxWorker=1, **kwargs):
    pylab.figure(2)
    xs = AllInfo['nWorker']
    ts_mono = AllInfo['t_monolithic']

    xgrid = np.linspace(0, maxWorker + 0.1, 100)
    pylab.plot(xgrid, xgrid, 'y--', label='ideal parallel')

    for method in getMethodNames(**kwargs):
        speedupRatio = ts_mono / AllInfo['t_' + method]
        pylab.plot(xs, speedupRatio, 'o-',
                   label=method,
                   color=ColorMap[method],
                   markeredgecolor=ColorMap[method])

    pylab.xlim([-0.2, maxWorker + 0.5])
    pylab.ylim([0, maxWorker + 0.5])
    pylab.legend(loc='upper left')
    pylab.xlabel('Number of Workers')
    pylab.ylabel('Speedup over Monolithic')

    if kwargs['savefig']:
        title = 'BenchmarkPlot_%s_%s_minDur=%.2f_Speedup.eps'\
            % (platform.node(), kwargs['task'], kwargs['minSliceDuration'])
        pylab.savefig(title,
                      format='eps',
                      bbox_inches='tight',
                      pad_inches=0)
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotBoundVsK(KVals=np.arange(1,50),
                 alpha=0.5,
                 gamma=10,
                 labels=None,
                 betaFunc='prior'):
    if labels is None:
        txtlabel = str(alpha)
        labels = [None, None]
    else:
        txtlabel = 'alpha\n' + str(alpha)
    exactVals = np.zeros(len(KVals))
    boundVals = np.zeros(len(KVals))
    for ii, K in enumerate(KVals):
        betaVec = 1.0/(1.0 + gamma) * np.ones(K+1)
        for k in range(1, K):
            betaVec[k] = betaVec[k] * (1 - np.sum(betaVec[:k]))
        betaVec[-1] = 1 - np.sum(betaVec[:-1])
        print betaVec
        assert np.allclose(betaVec.sum(), 1.0)
        exactVals[ii] = cDir_exact(alpha, betaVec)
        boundVals[ii] = cDir_surrogate(alpha, betaVec)
    assert np.all(exactVals >= boundVals)
    pylab.plot(KVals, exactVals,
               'k-', linewidth=LINEWIDTH, label=labels[0])
    pylab.plot(KVals, boundVals,
               'r--', linewidth=LINEWIDTH, label=labels[1])
    index = -1

    pylab.text(KVals[index]+.25, boundVals[index],
        txtlabel, fontsize=LEGENDSIZE-8)
    pylab.xlim([0, np.max(KVals)+7.5])
    pylab.gca().set_xticks([0, 10, 20, 30, 40, 50])
    pylab.xlabel("K", fontsize=FONTSIZE)
    pylab.ylabel("cDir function", fontsize=FONTSIZE)
    pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def makeFigure(hmmKappa=0):
    Data, trueResp = makeDataAndTrueResp()

    kemptyVals = np.asarray([0, 1, 2, 3.])
    ELBOVals = np.zeros_like(kemptyVals, dtype=np.float)

    # Iterate over the number of empty states (0, 1, 2, ...)
    for ii, kempty in enumerate(kemptyVals):
        resp = makeNewRespWithEmptyStates(trueResp, kempty)
        ELBOVals[ii] = resp2ELBO_HDPHMM(Data, resp, hmmKappa=hmmKappa)

    # Make largest value the one with kempty=0, to make plot look good
    ELBOVals -= ELBOVals[0]

    # Plot the results
    from matplotlib import pylab
    figH = pylab.figure(figsize=(6, 4))
    plotargs = dict(markersize=10, linewidth=3)
    pylab.plot(kemptyVals, ELBOVals, 'o--', label='HDP surrogate',
               color='b', markeredgecolor='b',
               **plotargs)
    pylab.xlabel('num. empty topics', fontsize=20)
    pylab.ylabel('change in ELBO', fontsize=20)
    B = 0.25
    pylab.xlim([-B, kemptyVals[-1] + B])
    pylab.xticks(kemptyVals)

    axH = pylab.gca()
    axH.tick_params(axis='both', which='major', labelsize=15)
    legH = pylab.legend(loc='upper left', prop={'size': 15})

    figH.subplots_adjust(bottom=0.16, left=0.2)
    pylab.show(block=True)
项目:sr    作者:chutsu    | 项目源码 | 文件源码
def plot_convergence_data(errors, label):
    error_line, = plt.plot(errors, label=label)
    # plt.xlim([0, 100])
    plt.xlim([100, 1000])
    plt.ylim([0, 100])
    plt.xlabel("Generation")
    plt.ylabel("Error")
    plt.legend(loc=0, prop={'size': 8})
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def plot_prof_1(self, species, keystring, xlim1, xlim2, ylim1,
                    ylim2, symbol=None, show=False):
        '''
        Plot one species for cycle between xlim1 and xlim2 Only works
        with instances of se and mesa _profile.

        Parameters
        ----------
        species : list
            Which species to plot.
        keystring : string or integer
            Label that appears in the plot or in the case of se, a
            cycle.
        xlim1, xlim2 : integer or float
            Mass coordinate range.
        ylim1, ylim2 : integer or float
            Mass fraction coordinate range.
        symbol : string, optional
            Which symbol you want to use.  If None symbol is set to '-'.
            The default is None.
        show : boolean, optional
            Show the ploted graph.  The default is False.

        '''
        plotType=self._classTest()
        if plotType=='se':
            #tot_mass=self.se.get(keystring,'total_mass')
            tot_mass=self.se.get('mini')
            age=self.se.get(keystring,'age')
            mass=self.se.get(keystring,'mass')
            Xspecies=self.se.get(keystring,'iso_massf',species)

            mod=keystring
        elif plotType=='mesa_profile':
            tot_mass=self.header_attr['star_mass']
            age=self.header_attr['star_age']
            mass=self.get('mass')
            mod=self.header_attr['model_number']
            Xspecies=self.get(species)
        else:
            print('This method is not supported for '+str(self.__class__))
            return

        if symbol == None:
            symbol = '-'

        x,y=self._logarithm(Xspecies,mass,True,False,10)
        #print x
        pl.plot(y,x,symbol,label=str(species))
        pl.xlim(xlim1,xlim2)
        pl.ylim(ylim1,ylim2)
        pl.legend()

        pl.xlabel('$Mass$ $coordinate$', fontsize=20)
        pl.ylabel('$X_{i}$', fontsize=20)
        #pl.title('Mass='+str(tot_mass)+', Time='+str(age)+' years, cycle='+str(mod))
        pl.title('Mass='+str(tot_mass)+', cycle='+str(mod))
        if show:
            pl.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 50
    rng = np.random.RandomState(42)
    X = np.sort(2 * rng.rand(N, 1) - 1, axis=0)
    Y = np.array([np.pi * np.sin(10 * X).ravel(),
                  np.pi * np.cos(10 * X).ravel()]).T
    Y += (0.5 - rng.rand(*Y.shape))
    Y = Y / np.std(Y, axis=0)

    def plot(model, alpha, fname):
        xx = np.linspace(-1.2, 1.2, 200)[:, None]
        if isinstance(model, IndepSGPR):
            mf, vf = model.predict_f(xx, alpha)
        else:
            # mf, vf = model.predict_f(xx, alpha, use_mean_only=False)
            mf, vf = model.predict_f(xx, alpha, use_mean_only=True)

        colors = ['r', 'b']
        plt.figure()
        for i in range(model.Dout):
            plt.subplot(model.Dout, 1, i + 1)
            plt.plot(X, Y[:, i], 'x', color=colors[i], mew=2)
            zu = model.models[i].zu
            mean_u, var_u = model.models[i].predict_f(zu, alpha)
            plt.plot(xx, mf[:, i], '-', color=colors[i], lw=2)
            plt.fill_between(
                xx[:, 0],
                mf[:, i] - 2 * np.sqrt(vf[:, i]),
                mf[:, i] + 2 * np.sqrt(vf[:, i]),
                color=colors[i], alpha=0.3)
            # plt.errorbar(zu[:, 0], mean_u, yerr=2*np.sqrt(var_u), fmt='ro')
            plt.xlim(-1.2, 1.2)
        plt.savefig(fname)

    # inference
    print "create independent output model and optimize ..."
    M = N
    alpha = 0.01
    indep_model = IndepSGPR(X, Y, M)
    indep_model.train(alpha=alpha)
    plot(indep_model, alpha, '/tmp/reg_indep_multioutput.pdf')

    print "create correlated output model and optimize ..."
    M = N
    ar_model = AutoSGPR(X, Y, M)
    ar_model.train(alpha=alpha)
    plot(ar_model, alpha, '/tmp/reg_autoreg_multioutput.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_step_1D():
    np.random.seed(42)

    def step(x):
        y = x.copy()
        y[y < 0.0] = 0.0
        y[y > 0.0] = 1.0
        return y + 0.02 * np.random.randn(x.shape[0], 1)

    print "create dataset ..."
    N = 100
    X = np.random.rand(N, 1) * 3 - 1.5
    Y = step(X) - 0.5
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-3, 3, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layers[0].zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')

        no_samples = 20
        xx = np.linspace(-3, 3, 500)[:, None]
        f_samples = m.sample_f(xx, no_samples)
        for i in range(no_samples):
            plt.plot(xx, f_samples[:, :, i], linewidth=0.5, alpha=0.5)

        plt.xlim(-3, 3)

    # inference
    print "create model and optimize ..."
    M = 20
    hidden_size = [2]
    model = aep.SDGPR(X, Y, M, hidden_size, lik='Gaussian')
    # model.optimise(method='L-BFGS-B', alpha=1, maxiter=1000)
    model.optimise(method='adam', adam_lr=0.05, alpha=1, maxiter=2000)
    plot(model)
    plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_model_no_control(model, plot_title='', name_suffix=''):
    # plot function
    mx, vx = model.get_posterior_x()
    mins = np.min(mx, axis=0) - 0.5
    maxs = np.max(mx, axis=0) + 0.5
    nGrid = 50
    xspaced = np.linspace(mins[0], maxs[0], nGrid)
    yspaced = np.linspace(mins[1], maxs[1], nGrid)
    xx, yy = np.meshgrid(xspaced, yspaced)
    Xplot = np.vstack((xx.flatten(), yy.flatten())).T
    mf, vf = model.predict_f(Xplot)
    fig = plt.figure()
    plt.imshow((mf[:, 0]).reshape(*xx.shape),
               vmin=mf.min(), vmax=mf.max(), origin='lower',
               extent=[mins[0], maxs[0], mins[1], maxs[1]], aspect='auto')
    plt.colorbar()
    plt.contour(
        xx, yy, (mf[:, 0]).reshape(*xx.shape),
        colors='k', linewidths=2, zorder=100)
    zu = model.dyn_layer.zu
    plt.plot(zu[:, 0], zu[:, 1], 'wo', mew=0, ms=4)
    for i in range(mx.shape[0] - 1):
        plt.plot(mx[i:i + 2, 0], mx[i:i + 2, 1],
                 '-bo', ms=3, linewidth=2, zorder=101)
    plt.xlabel(r'$x_{t, 1}$')
    plt.ylabel(r'$x_{t, 2}$')
    plt.xlim([mins[0], maxs[0]])
    plt.ylim([mins[1], maxs[1]])
    plt.title(plot_title)
    plt.savefig('/tmp/hh_gpssm_dim_0' + name_suffix + '.pdf')

    fig = plt.figure()
    plt.imshow((mf[:, 1]).reshape(*xx.shape),
               vmin=mf.min(), vmax=mf.max(), origin='lower',
               extent=[mins[0], maxs[0], mins[1], maxs[1]], aspect='auto')
    plt.colorbar()
    plt.contour(
        xx, yy, (mf[:, 1]).reshape(*xx.shape),
        colors='k', linewidths=2, zorder=100)
    zu = model.dyn_layer.zu
    plt.plot(zu[:, 0], zu[:, 1], 'wo', mew=0, ms=4)
    for i in range(mx.shape[0] - 1):
        plt.plot(mx[i:i + 2, 0], mx[i:i + 2, 1],
                 '-bo', ms=3, linewidth=2, zorder=101)
    plt.xlabel(r'$x_{t, 1}$')
    plt.ylabel(r'$x_{t, 2}$')
    plt.xlim([mins[0], maxs[0]])
    plt.ylim([mins[1], maxs[1]])
    plt.title(plot_title)
    plt.savefig('/tmp/hh_gpssm_dim_1' + name_suffix + '.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D_pep_inference():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create aep model and optimize ..."
    M = 20
    alpha = 0.5
    model_aep = aep.SGPR(X, Y, M, lik='Gaussian')
    model_aep.optimise(method='L-BFGS-B', alpha=alpha, maxiter=2000)
    # plot(model_aep)
    # plt.show()
    # plt.savefig('/tmp/gpr_aep_reg.pdf')

    start_time = time.time()
    model = pep.SGPR_rank_one(X, Y, M, lik='Gaussian')
    model.update_hypers(model_aep.get_hypers())
    # model.update_hypers(model.init_hypers())
    model.run_pep(np.arange(N), 10, alpha=alpha, parallel=False, compute_energy=True)
    end_time = time.time()
    print "sequential updates: %.4f" % (end_time - start_time)
    # plot(model)
    # plt.savefig('/tmp/gpr_pep_reg_seq.pdf')


    start_time = time.time()
    model = pep.SGPR_rank_one(X, Y, M, lik='Gaussian')
    model.update_hypers(model_aep.get_hypers())
    # model.update_hypers(model.init_hypers(Y))
    model.run_pep(np.arange(N), 10, alpha=alpha, parallel=True, compute_energy=False)
    end_time = time.time()
    print "parallel updates: %.4f" % (end_time - start_time)
    # plot(model)
    # plt.savefig('/tmp/gpr_pep_reg_par.pdf')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def run_regression_1D():
    np.random.seed(42)

    print "create dataset ..."
    N = 200
    X = np.random.rand(N, 1)
    Y = np.sin(12 * X) + 0.5 * np.cos(25 * X) + np.random.randn(N, 1) * 0.2
    # plt.plot(X, Y, 'kx', mew=2)

    def plot(m):
        xx = np.linspace(-0.5, 1.5, 100)[:, None]
        mean, var = m.predict_f(xx)
        zu = m.sgp_layer.zu
        mean_u, var_u = m.predict_f(zu)
        plt.figure()
        plt.plot(X, Y, 'kx', mew=2)
        plt.plot(xx, mean, 'b', lw=2)
        plt.fill_between(
            xx[:, 0],
            mean[:, 0] - 2 * np.sqrt(var[:, 0]),
            mean[:, 0] + 2 * np.sqrt(var[:, 0]),
            color='blue', alpha=0.2)
        plt.errorbar(zu, mean_u, yerr=2 * np.sqrt(var_u), fmt='ro')
        plt.xlim(-0.1, 1.1)

    # inference
    print "create model and optimize ..."
    M = 20
    alpha = 0.1
    model_aep = aep.SGPR(X, Y, M, lik='Gaussian')
    model_aep.optimise(method='L-BFGS-B', alpha=alpha, maxiter=2000)
    plot(model_aep)
    plt.savefig('/tmp/gpr_aep_reg.pdf')

    start_time = time.time()
    model = pep.SGPR(X, Y, M, lik='Gaussian')
    model.update_hypers(model_aep.get_hypers())
    # model.update_hypers(model.init_hypers())
    model.inference(alpha=alpha, no_epochs=10)
    end_time = time.time()
    print "sequential updates: %.4f" % (end_time - start_time)
    plot(model)
    plt.savefig('/tmp/gpr_pep_reg_seq.pdf')


    start_time = time.time()
    model = pep.SGPR(X, Y, M, lik='Gaussian')
    model.update_hypers(model_aep.get_hypers())
    # model.update_hypers(model.init_hypers())
    model.inference(alpha=alpha, no_epochs=10, parallel=True)
    end_time = time.time()
    print "parallel updates: %.4f" % (end_time - start_time)
    plot(model)
    plt.savefig('/tmp/gpr_pep_reg_par.pdf')

    # plt.show()