Python matplotlib.pylab 模块,yticks() 实例源码

我们从Python开源项目中,提取了以下26个代码示例,用于说明如何使用matplotlib.pylab.yticks()

项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def showExampleDocs(pylab=None, nrows=3, ncols=3):
    if pylab is None:
        from matplotlib import pylab
    Data = get_data(seed=0, nObsPerDoc=200)
    PRNG = np.random.RandomState(0)
    chosenDocs = PRNG.choice(Data.nDoc, nrows * ncols, replace=False)
    for ii, d in enumerate(chosenDocs):
        start = Data.doc_range[d]
        stop = Data.doc_range[d + 1]
        Xd = Data.X[start:stop]
        pylab.subplot(nrows, ncols, ii + 1)
        pylab.plot(Xd[:, 0], Xd[:, 1], 'k.')
        pylab.axis('image')
        pylab.xlim([-1.5, 1.5])
        pylab.ylim([-1.5, 1.5])
        pylab.xticks([])
        pylab.yticks([])
    pylab.tight_layout()
# Set Toy Parameters
###########################################################
项目:POT    作者:rflamary    | 项目源码 | 文件源码
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:TemporalConvolutionalNetworks    作者:colincsl    | 项目源码 | 文件源码
def imshow_(x, **kwargs):
    if x.ndim == 2:
        plt.imshow(x, interpolation="nearest", **kwargs)
    elif x.ndim == 1:
        plt.imshow(x[:,None].T, interpolation="nearest", **kwargs)
        plt.yticks([])
    plt.axis("tight")

# ------------- Data -------------
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_representations(X, y, title):
    """Plot distributions and thier labels."""
    x_min, x_max = np.min(X, 0), np.max(X, 0)
    X = (X - x_min) / (x_max - x_min)

    f = plt.figure(figsize=(15, 10.8), dpi=300)
#    ax = plt.subplot(111)
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(y[i]),
                 color=plt.cm.Set1(y[i] / 10.),
                 fontdict={'weight': 'bold', 'size': 9})

#    if hasattr(offsetbox, 'AnnotationBbox'):
#        # only print thumbnails with matplotlib > 1.0
#        shown_images = np.array([[1., 1.]])  # just something big
#        for i in range(digits.data.shape[0]):
#            dist = np.sum((X[i] - shown_images) ** 2, 1)
#            if np.min(dist) < 4e-3:
#                # don't show points that are too close
#                continue
#            shown_images = np.r_[shown_images, [X[i]]]
#            imagebox = offsetbox.AnnotationBbox(
#                offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
#                X[i])
#            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title)
    return f
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotErrorVsAlph(alphaVals=np.linspace(.001, 3, 1000),
                    beta1=0.5):
    exactVals = cD_exact(alphaVals, beta1)
    boundVals = cD_bound(alphaVals, beta1)
    assert np.all(exactVals >= boundVals)
    pylab.plot(alphaVals, exactVals - boundVals,
               '-', linewidth=LINEWIDTH, label='beta_1=%.2f' % (beta1))

    pylab.xlim([np.min(alphaVals) - 0.1, np.max(alphaVals) + 0.1])
    pylab.xticks(np.arange(np.max(alphaVals) + 1))
    pylab.xlabel("alpha", fontsize=FONTSIZE)

    pylab.ylabel("error", fontsize=FONTSIZE)
    pylab.yticks(np.arange(0, 1.5, 0.5))
    pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show()
项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_posterior_linear(params_fname, fig_fname, control=False, M=20):
    # load dataset
    data = np.loadtxt('./sandbox/hh_data.txt')
    # use the voltage and potasisum current
    data = data / np.std(data, axis=0)
    y = data[:, :4]
    xc = data[:, [-1]]
    # init hypers
    Dlatent = 2
    Dobs = y.shape[1]
    T = y.shape[0]
    if control:
        x_control = xc
        no_panes = 5
    else:
        x_control = None
        no_panes = 4
    model_aep = aep.SGPSSM_Linear(y, Dlatent, M,
                                  lik='Gaussian', prior_mean=0, prior_var=1000, x_control=x_control)
    model_aep.load_model(params_fname)
    my, vy, vyn = model_aep.get_posterior_y()
    vy_diag = np.diagonal(vy, axis1=1, axis2=2)
    vyn_diag = np.diagonal(vyn, axis1=1, axis2=2)
    cs = ['k', 'r', 'b', 'g']
    labels = ['V', 'm', 'n', 'h']
    plt.figure()
    t = np.arange(T)
    for i in range(4):
        yi = y[:, i]
        mi = my[:, i]
        vi = vy_diag[:, i]
        vin = vyn_diag[:, i]
        plt.subplot(no_panes, 1, i + 1)
        plt.fill_between(t, mi + 2 * np.sqrt(vi), mi - 2 *
                         np.sqrt(vi), color=cs[i], alpha=0.4)
        plt.plot(t, mi, '-', color=cs[i])
        plt.plot(t, yi, '--', color=cs[i])
        plt.ylabel(labels[i])
        plt.xticks([])
        plt.yticks([])

    if control:
        plt.subplot(no_panes, 1, no_panes)
        plt.plot(t, x_control, '-', color='m')
        plt.ylabel('I')
        plt.yticks([])
    plt.xlabel('t')
    plt.savefig(fig_fname)
    if control:
        plot_model_with_control(model_aep, '', '_linear_with_control')
    else:
        plot_model_no_control(model_aep, '', '_linear_no_control')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_posterior_gp(params_fname, fig_fname, control=False, M=20):
    # load dataset
    data = np.loadtxt('./sandbox/hh_data.txt')
    # use the voltage and potasisum current
    data = data / np.std(data, axis=0)
    y = data[:, :4]
    xc = data[:, [-1]]
    # init hypers
    Dlatent = 2
    Dobs = y.shape[1]
    T = y.shape[0]
    if control:
        x_control = xc
        no_panes = 5
    else:
        x_control = None
        no_panes = 4
    model_aep = aep.SGPSSM_GP(y, Dlatent, M,
                              lik='Gaussian', prior_mean=0, prior_var=1000, x_control=x_control)
    model_aep.load_model(params_fname)
    my, vy, vyn = model_aep.get_posterior_y()
    cs = ['k', 'r', 'b', 'g']
    labels = ['V', 'm', 'n', 'h']
    plt.figure()
    t = np.arange(T)
    for i in range(4):
        yi = y[:, i]
        mi = my[:, i]
        vi = vy[:, i]
        vin = vyn[:, i]
        plt.subplot(no_panes, 1, i + 1)
        plt.fill_between(t, mi + 2 * np.sqrt(vi), mi - 2 *
                         np.sqrt(vi), color=cs[i], alpha=0.4)
        plt.plot(t, mi, '-', color=cs[i])
        plt.plot(t, yi, '--', color=cs[i])
        plt.ylabel(labels[i])
        plt.xticks([])
        plt.yticks([])

    if control:
        plt.subplot(no_panes, 1, no_panes)
        plt.plot(t, x_control, '-', color='m')
        plt.ylabel('I')
        plt.yticks([])
    plt.xlabel('t')

    plt.savefig(fig_fname)

    # if control:
    #   plot_model_with_control(model_aep, '', '_gp_with_control')
    # else:
    #   plot_model_no_control(model_aep, '', '_gp_no_control')
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_prediction_gp(params_fname, fig_fname, M=20):
    # load dataset
    data = np.loadtxt('./sandbox/hh_data.txt')
    # use the voltage and potasisum current
    data = data / np.std(data, axis=0)
    y = data[:, :4]
    xc = data[:, [-1]]
    # init hypers
    Dlatent = 2
    Dobs = y.shape[1]
    T = y.shape[0]
    x_control = xc
    # x_control_test = np.flipud(x_control)
    x_control_test = x_control * 1.5
    no_panes = 5
    model_aep = aep.SGPSSM_GP(y, Dlatent, M,
                              lik='Gaussian', prior_mean=0, prior_var=1000, x_control=x_control)
    model_aep.load_model(params_fname)
    print 'ls ', np.exp(model_aep.dyn_layer.ls)
    my, vy, vyn = model_aep.get_posterior_y()
    mxp, vxp, myp, vyp, vynp = model_aep.predict_forward(T, x_control_test)
    cs = ['k', 'r', 'b', 'g']
    labels = ['V', 'm', 'n', 'h']
    plt.figure()
    t = np.arange(T)
    for i in range(4):
        yi = y[:, i]
        mi = my[:, i]
        vi = vy[:, i]
        vin = vyn[:, i]
        mip = myp[:, i]
        vip = vyp[:, i]
        vinp = vynp[:, i]

        plt.subplot(5, 1, i + 1)
        plt.fill_between(t, mi + 2 * np.sqrt(vi), mi - 2 *
                         np.sqrt(vi), color=cs[i], alpha=0.4)
        plt.plot(t, mi, '-', color=cs[i])
        plt.fill_between(np.arange(T, 2 * T), mip + 2 * np.sqrt(vip),
                         mip - 2 * np.sqrt(vip), color=cs[i], alpha=0.4)
        plt.plot(np.arange(T, 2 * T), mip, '-', color=cs[i])
        plt.plot(t, yi, '--', color=cs[i])
        plt.axvline(x=T, color='k', linewidth=2)
        plt.ylabel(labels[i])
        plt.xticks([])
        plt.yticks([])

    plt.subplot(no_panes, 1, no_panes)
    plt.plot(t, x_control, '-', color='m')
    plt.plot(np.arange(T, 2 * T), x_control_test, '-', color='m')
    plt.axvline(x=T, color='k', linewidth=2)
    plt.ylabel('I')
    plt.yticks([])
    plt.xlabel('t')
    plt.savefig(fig_fname)
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def main(args):
    e = Eligibility(length=args.length)
    if args.mode == "dexp":
        e.efunc_ = e.efunc_double_exp
    elif args.mode == "rect":
        e.efunc_ = e.efunc_rect
    elif args.mode == "ramp":
        e.efunc_ = e.efunc_ramp
    elif args.mode == "exp":
        e.efunc_ = e.efunc_exp
    e.gen_efunc_table()

    x = np.arange(args.length)
    print x
    et = e.efunc(x)
    # plot and test with array argument
    cmstr = "ko"
    pl.plot(x, et, cmstr, lw=1.)
    if args.mode == "rect":
        # negative time for readability without lines
        pl.plot(np.arange(-5, x[0]), np.zeros(5,), cmstr, lw=1.)
        # pl.plot([-10, -1, x[0]], [0, 0, et[0]], cmstr, lw=1.)
        pl.plot([x[-1], x[0] + args.length], [et[-1], 0.], cmstr, lw=1.)
        pl.plot(x + args.length, np.zeros((len(et))), cmstr, lw=1.)
        pl.ylim((-0.005, np.max(et) * 1.1))
    # pl.plot(x, et, "k-", lw=1.)
    # pl.yticks([])
    # line at zero
    # pl.axhline(0., c="black")
    pl.xlabel("t [steps]")
    pl.ylabel("Eligibility")
    if args.plotsave:    
        pl.gcf().set_size_inches((6, 2))
        pl.gcf().savefig("eligibility_window.pdf", dpi=300, bbox_inches="tight")
    pl.show()

    # check perf: loop, test with single integer arguments
    import time
    now = time.time()
    for i in range(100):
        for j in range(args.length):
            e.efunc(j)
    print "table took:", time.time() - now

    now = time.time()
    for i in range(100):
        for j in range(args.length):
            e.efunc_(j)
    print "feval took:", time.time() - now
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def makeFigure(**kwargs):
    Data, trueResp = makeDataAndTrueResp(**kwargs)

    kemptyVals = np.asarray([0, 1, 2, 3.])
    ELBOVals = np.zeros_like(kemptyVals, dtype=np.float)
    PointEstELBOVals = np.zeros_like(kemptyVals, dtype=np.float)

    # Iterate over the number of empty states (0, 1, 2, ...)
    for ii, kempty in enumerate(kemptyVals):
        resp = makeNewRespWithEmptyStates(trueResp, kempty)
        PointEstELBOVals[ii] = resp2ELBO_HDPTopicModel(
            Data,
            resp,
            doPointEstimate=1,
            **kwargs)
        ELBOVals[ii] = resp2ELBO_HDPTopicModel(Data, resp, **kwargs)

    # Make largest value the one with kempty=0, to make plot look good
    PointEstELBOVals -= PointEstELBOVals[0]
    ELBOVals -= ELBOVals[0]

    # Rescale so that yaxis has units on order of 1, not 0.001
    scale = np.max(np.abs(ELBOVals))
    ELBOVals /= scale
    PointEstELBOVals /= scale

    # Set buffer-space for defining plotable area
    xB = 0.25
    B = 0.19  # big buffer for sides where we will put text labels
    b = 0.01  # small buffer for other sides
    TICKSIZE = 30
    FONTSIZE = 40
    LEGENDSIZE = 30
    LINEWIDTH = 4

    # Plot the results
    figH = pylab.figure(figsize=(9.1, 6))
    axH = pylab.subplot(111)
    axH.set_position([xB, B, (1 - xB - b), (1 - B - b)])

    plotargs = dict(markersize=20, linewidth=LINEWIDTH)
    pylab.plot(kemptyVals, PointEstELBOVals, 'v-', label='HDP point est',
               color='b', markeredgecolor='b',
               **plotargs)
    pylab.plot(kemptyVals, np.zeros_like(kemptyVals), 's:', label='HDP exact',
               color='g', markeredgecolor='g',
               **plotargs)
    pylab.plot(kemptyVals, ELBOVals, 'o--', label='HDP surrogate',
               color='r', markeredgecolor='r',
               **plotargs)

    pylab.xlabel('num. empty topics', fontsize=FONTSIZE)
    pylab.ylabel('change in ELBO', fontsize=FONTSIZE)
    xB = 0.25
    pylab.xlim([-xB, kemptyVals[-1] + xB])
    pylab.xticks(kemptyVals)
    pylab.yticks([-1, 0, 1])

    axH = pylab.gca()
    axH.tick_params(axis='both', which='major', labelsize=TICKSIZE)
    legH = pylab.legend(loc='upper left', prop={'size': LEGENDSIZE})