Python matplotlib.pylab 模块,close() 实例源码

我们从Python开源项目中,提取了以下45个代码示例,用于说明如何使用matplotlib.pylab.close()

项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_x_y_yhat(x, y, y_hat, xsz, ysz, binz=False):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure(figsize=(15, 10.8), dpi=300)
    gs = gridspec.GridSpec(1, 3)
    if binz:
        y_hat = (y_hat > 0.5) * 1.
    ims = [x, y, y_hat]
    tils = [
        "x:" + str(xsz) + "x" + str(xsz),
        "y:" + str(ysz) + "x" + str(ysz),
        "yhat:" + str(ysz) + "x" + str(ysz)]
    for n, ti in zip([0, 1, 2], tils):
        f.add_subplot(gs[n])
        if n == 0:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        else:
            plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)

    return f
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_x_x_yhat(x, x_hat):
    """Plot x, y and y_hat side by side."""
    plt.close("all")
    f = plt.figure()  # figsize=(15, 10.8), dpi=300
    gs = gridspec.GridSpec(1, 2)
    ims = [x, x_hat]
    tils = [
        "xin:" + str(x.shape[0]) + "x" + str(x.shape[1]),
        "xout:" + str(x.shape[1]) + "x" + str(x_hat.shape[1])]
    for n, ti in zip([0, 1], tils):
        f.add_subplot(gs[n])
        plt.imshow(ims[n], cmap=cm.Greys_r)
        plt.title(ti)
        ax = f.gca()
        ax.set_axis_off()

    return f
项目:cortex    作者:rdevon    | 项目源码 | 文件源码
def save_images(self, X, imgfile, density=False):
        ax = plt.axes()
        x = X[:, 0]
        y = X[:, 1]
        if density:
            xy = np.vstack([x,y])
            z = scipy.stats.gaussian_kde(xy)(xy)
            ax.scatter(x, y, c=z, marker='o', edgecolor='')
        else:
            ax.scatter(x, y, marker='o', c=range(x.shape[0]),
                        cmap=plt.cm.coolwarm)

        if self.collection is not None:
            self.collection.set_transform(ax.transData)
            ax.add_collection(self.collection)


        ax.text(x[0], y[0], str('start'), transform=ax.transAxes)
        ax.axis([-0.2, 1.2, -0.2, 1.2])
        fig = plt.gcf()

        plt.savefig(imgfile)
        plt.close()
项目:TSS_detection    作者:ueser    | 项目源码 | 文件源码
def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh):
    fig=pl.figure()
    ## To plot and save
    pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5);
    pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red');
    pl.hlines(-np.log10(0.05),min(logFC),max(logFC))
    pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val)))
    pl.xlim(-3,3)
    pl.xlabel('Log Fold Change')
    pl.ylabel('-log10(p-value)')
    pl.savefig(saveName)
    pl.close(fig)


# def plot_histograms(df_peaks,pntr_list):
#
#     for pntr in pntr_list:
#         colName =pntr[2]+'_Intragenic_position'
#         pl.hist(df_peaks[colName])
#         pl.xlabel(colName)
#         pl.ylabel()
#         pl.show()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins, data):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_2d(dataset, nbins, data, extra=None):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=2)
        rows, cols = nbins
        im = np.zeros(nbins)
        for i in xrange(rows):
            for j in xrange(cols):
                im[i,j] = ((data[:,0] == i) & (data[:,1] == j)).sum()
        plt.imshow(im, cmap='gray_r', interpolation='none')
        if extra is not None:
            dataset += extra
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins):
    data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_2d(dataset, nbins, data=None, extra=None):
    if data is None:
        data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-2:]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=2)
        rows, cols = nbins
        im = np.zeros(nbins)
        for i in xrange(rows):
            for j in xrange(cols):
                im[i,j] = ((data[:,0] == i) & (data[:,1] == j)).sum()
        plt.imshow(im, cmap='gray_r', interpolation='none')
        if extra is not None:
            dataset += extra
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotValueFunction(self, valueFunction, prefix):
        '''3d plot of a value function.'''
        fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
        X, Y = np.meshgrid(np.arange(self.numCols), np.arange(self.numRows))
        Z = valueFunction.reshape(self.numRows, self.numCols)

        for i in xrange(len(X)):
            for j in xrange(len(X[i])/2):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

        ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
            cmap = plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(self.outputPath + prefix + 'value_function.png')
        plt.close()
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_email_message():
    subject = 'test subject'
    body = 'test body'
    recipient = ['recipient.email.address']
    sender = 'sender.email.address'
    attachment = 'file.txt'
    f = open('file.txt','w')
    f.write('test attachment')
    f.close()

    msg = pecos.io._create_email_message(subject, body, recipient, sender, 
                                         attachment)

    assert_true(subject in msg.as_string())
    assert_true(body in msg.as_string())
    assert_true(recipient[0] in msg.as_string())
    assert_true(sender in msg.as_string())
    assert_true(attachment in msg.as_string())
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_timeseries1():
    filename = abspath(join(testdir, 'plot_timeseries1.png'))
    if isfile(filename):
        os.remove(filename)

    periods = 5
    index = pd.date_range('1/1/2016', periods=periods, freq='H')
    data = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12], [13,14,15]])
    df = pd.DataFrame(data=data, index=index, columns=['A', 'B', 'C'])

    plt.figure()
    pecos.graphics.plot_timeseries(df,yaxis_min=0, yaxis_max=20)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_timeseries2():
    filename = abspath(join(testdir, 'plot_timeseries2.png'))
    if isfile(filename):
        os.remove(filename)

    periods = 5
    index = pd.date_range('1/1/2016', periods=periods, freq='H')
    data = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12], [13,14,15]])
    df = pd.DataFrame(data=data, index=index, columns=['A', 'B', 'C'])
    tfilter = pd.Series(data = (df.index < index[3]), index = df.index)

    plt.figure()
    pecos.graphics.plot_timeseries(df,tfilter, yaxis_min=0, yaxis_max=20)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_heatmap1():
    filename = abspath(join(testdir, 'plot_heatmap1.png'))
    if isfile(filename):
        os.remove(filename)

    periods = 5
    index = pd.date_range('1/1/2016', periods=periods, freq='D')
    data = np.random.rand(periods, 4)
    df = pd.DataFrame(data=data, index=index, columns=['A', 'B', 'C', 'D'])

    plt.figure()
    pecos.graphics.plot_heatmap(df)
    plt.savefig(filename, format='png', bbox_inches='tight', pad_inches = 0)
    plt.close()

    assert_true(isfile(filename))
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_doy_heatmap1():
    filename = abspath(join(testdir, 'plot_doy_heatmap1.png'))
    if isfile(filename):
        os.remove(filename)

    periods = 5*24 # 5 days
    index = pd.date_range('3/1/2016', periods=periods, freq='H')
    data = np.random.rand(periods)
    df = pd.DataFrame(data=data, index=index, columns=['A'])

    plt.figure()
    pecos.graphics.plot_doy_heatmap(df['A'])
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_classes(y, cord, names, test_error, message=""):
    plt.close("all")
    cord = np.array(cord)
    colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k')
    un = np.unique(y)
    fig, ax = plt.subplots()
    for u, col in zip(un, colors):
        ind = np.argwhere(y == u)
        x = cord[ind, :]
        x = x.reshape(x.shape[0], cord.shape[1])
        ax.scatter(x[:, 0], x[:, 1], label="class:" + str(u),
                   color=col)

    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    fig.suptitle(
        "Output prediction. Test error:" + str(test_error*100) + "%. " +
        message, fontsize=8)
    return fig
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_penalty_vl(debug, tag, fold_exp):
    plt.close("all")
    vl = np.array(debug["penalty"])
    fig = plt.figure(figsize=(15, 10.8), dpi=300)
    names = debug["names"]
    for i in range(vl.shape[1]):
        if vl.shape[1] > 1:
            plt.plot(vl[:, i], label="layer_"+str(names[i]))
        else:
            plt.plot(vl[:], label="layer_"+str(names[i]))
    plt.xlabel("mini-batchs")
    plt.ylabel("value of penlaty")
    plt.title(
        "Penalty value over layers:" + "_".join([str(k) for k in names]) +
        ". tag:" + tag)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(fold_exp+"/penalty.png", bbox_inches='tight')
    plt.close('all')
    del fig
项目:WNTR    作者:USEPA    | 项目源码 | 文件源码
def test_plot_fragility_curve1():
    from scipy.stats import lognorm
    filename = abspath(join(testdir, 'plot_fragility_curve1.png'))
    if isfile(filename):
        os.remove(filename)

    FC = wntr.scenario.FragilityCurve()
    FC.add_state('Minor', 1, {'Default': lognorm(0.5,scale=0.3)})
    FC.add_state('Major', 2, {'Default': lognorm(0.5,scale=0.7)}) 

    plt.figure()
    wntr.graphics.plot_fragility_curve(FC)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:ConvNetQuake    作者:tperol    | 项目源码 | 文件源码
def plot_true_and_augmented_data(sample,noised_sample,label,n_examples):
    output_dir = os.path.split(FLAGS.output)[0]
    # Save augmented data
    plt.clf()
    fig, ax = plt.subplots(3,1)
    for t in range(noised_sample.shape[1]):
        ax[t].plot(noised_sample[:,t])
        ax[t].set_xlabel('time (samples)')
        ax[t].set_ylabel('amplitude')
    ax[0].set_title('window {:03d}, cluster_id: {}'.format(n_examples,label))
    plt.savefig(os.path.join(output_dir, "augmented_data",
                            'augmented_{:03d}.pdf'.format(n_examples)))
    plt.close()

    # Save true data
    plt.clf()
    fig, ax = plt.subplots(3,1)
    for t in range(sample.shape[1]):
        ax[t].plot(sample[:,t])
        ax[t].set_xlabel('time (samples)')
        ax[t].set_ylabel('amplitude')
    ax[0].set_title('window {:03d}, cluster_id: {}'.format(n_examples,label))
    plt.savefig(os.path.join(output_dir, "true_data",
                            'true__{:03d}.pdf'.format(n_examples)))
    plt.close()
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def create_simpleDS9region(outputfile,ralist,declist,color='red',circlesize=0.5,textlist=None,clobber=False):
    """
    Generate a basic DS9 region file with circles around a list of coordinates

    --- INPUT ---
    outputfile   Path and name of file to store reigion file to
    ralist       List of R.A. to position circles at
    declist      List of Dec. to position circles at
    color        Color of circles
    size         Size of circles (radius in arcsec)
    text         Text string for each circle
    clobber      Overwrite existing files?

    """

    if not clobber:
        if os.path.isfile(outputfile):
            sys.exit('File already exists and clobber = False --> ABORTING')
    fout = open(outputfile,'w')

    fout.write("# Region file format: DS9 version 4.1 \nfk5\n")

    for rr, ra in enumerate(ralist):
        string = 'circle('+str(ra)+','+str(declist[rr])+','+str(circlesize)+'") # color='+color+' width=3 '

        if textlist is not None:
            string = string+' font="times 10 bold roman" text={'+textlist[rr]+'}'

        fout.write(string+' \n')

    fout.close()
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:core-framework    作者:RedhawkSDR    | 项目源码 | 文件源码
def close(self):
        """
        Close the plot.
        """
        if self._figure:
            pylab.close(self._figure)
            self._figure = None
            self._plot = None
            self._canvas = None
项目:core-framework    作者:RedhawkSDR    | 项目源码 | 文件源码
def releaseObject(self):
        """
        Releases the plot and cleans up resources.
        """
        self.stop()
        super(PlotBase,self).releaseObject()
        self.close()
项目:cortex    作者:rdevon    | 项目源码 | 文件源码
def save(self, out_path):
        '''Saves a figure for the monitor

        Args:
            out_path: str
        '''

        plt.clf()
        np.set_printoptions(precision=4)
        font = {
            'size': 7
        }
        matplotlib.rc('font', **font)
        y = 2
        x = ((len(self.d) - 1) // y) + 1
        fig, axes = plt.subplots(y, x)
        fig.set_size_inches(20, 8)

        for j, (k, v) in enumerate(self.d.iteritems()):
            ax = axes[j // x, j % x]
            ax.plot(v, label=k)
            if k in self.d_valid.keys():
                ax.plot(self.d_valid[k], label=k + '(valid)')
            ax.set_title(k)
            ax.legend()

        plt.tight_layout()
        plt.savefig(out_path, facecolor=(1, 1, 1))
        plt.close()
项目:matplotlib_pubplots    作者:yoachim    | 项目源码 | 文件源码
def plot_multi_format(plot_funcs, plot_kwargs=None,
                      usetex=False, outdir='plots',
                      setting_funcs=['single', 'span', 'slides', 'thumbnails']):
    """
    Outputs plots formatted 4 ways: Publication ready (narrow and wide),
    PowerPoint ready, and png thumbnails.

    input
    -----
    plot_funcs : List of functions that return a mpl figure and a filename (or list of figures and filenames)

    """

    setting_dict = {'single': mpl_single_column,
                    'span': mpl_span_columns,
                    'slides': mpl_slides,
                    'thumbnails': mpl_thumbnails}

    if not os.path.exists(outdir):
        os.makedirs(outdir)
    # For python 3.4
    # os.makedirs(outdir, exist_ok=True)

    if plot_kwargs is None:
        plot_kwargs=[{}]*len(plot_funcs)

    for key in setting_funcs:
        setting_dict[key](usetex=usetex)
        for plot_func,pkwargs in zip(plot_funcs,plot_kwargs):
            figs, names = plot_func(**pkwargs)
            for fig,name in zip(figs,names):
                fig.savefig(os.path.join(outdir, key+'_'+name))
            plt.close('all')
项目:Trending-Places-in-OpenStreetMap    作者:geometalab    | 项目源码 | 文件源码
def plot_graphs(df, trending_daily, day_from, day_to, limit, country_code, folder_out=None):
    days = pd.DatetimeIndex(start=day_from, end=day_to, freq='D')
    for day in days:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        plt.rc('lines', linewidth=2)
        data = trending_daily.get_group(str(day.date()))
        places, clusters = top_trending(data, limit)
        for cluster in clusters:
            places.add(max_from_cluster(cluster, data))
        ax.set_prop_cycle(plt.cycler('color', ['r', 'b', 'yellow'] + [plt.cm.Accent(i) for i in np.linspace(0, 1, limit-3)]
                                     ) + plt.cycler('linestyle', ['-', '-', '-', '-', '-', '--', '--', '--', '--', '--']))
        frame = export(places, clusters, data)
        frame.sort_values('trending_rank', ascending=False, inplace=True)
        for i in range(len(frame)):
            item = frame.index[i]
            lat, lon, country = item
            result_items = ReverseGeoCode().get_address_attributes(lat, lon, 10, 'city', 'country_code')
            if 'city' not in result_items.keys():
                mark = "%s (%s)" % (manipulate_display_name(result_items['display_name']),
                                    result_items['country_code'].upper() if 'country_code' in result_items.keys() else country)
            else:
                if check_eng(result_items['city']):
                    mark = "%s (%s)" % (result_items['city'], result_items['country_code'].upper())
                else:
                    mark = "%.2f %.2f (%s)" % (lat, lon, result_items['country_code'].upper())
            gp = df.loc[item].plot(ax=ax, x='date', y='count', label=mark)
        ax.tick_params(axis='both', which='major', labelsize=10)
        ax.set_yscale("log", nonposy='clip')
        plt.xlabel('Date', fontsize='small', verticalalignment='baseline', horizontalalignment='right')
        plt.ylabel('Total number of views (log)', fontsize='small', verticalalignment='center', horizontalalignment='center', labelpad=6)
        gp.legend(loc='best', fontsize='xx-small', ncol=2)
        gp.set_title('Top 10 OSM trending places on ' + str(day.date()), {'fontsize': 'large', 'verticalalignment': 'bottom'})
        plt.tight_layout()
        db = TrendingDb()
        db.update_table_img(plt, str(day.date()), region=country_code)
        plt.close()
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotBasisFunctions(self, eigenvalues, eigenvectors):
        '''3d plot of the basis function. Right now I am plotting eigenvectors,
           so each coordinate of the eigenvector correspond to the value to be
           plotted for the correspondent state.''' 
        for i in xrange(len(eigenvalues)):  
            fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
            X, Y = np.meshgrid(np.arange(self.numRows), np.arange(self.numCols))
            Z = eigenvectors[:,i].reshape(self.numCols, self.numRows)

            for ii in xrange(len(X)):
                for j in xrange(len(X[ii])/2):
                    tmp = X[ii][j]
                    X[ii][j] = X[ii][len(X[ii]) - j - 1]
                    X[ii][len(X[ii]) - j - 1] = tmp

            my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

            ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
                cmap = plt.get_cmap('jet'))
            plt.gca().view_init(elev=30, azim=30)
            plt.savefig(self.outputPath + str(i) + '_eig' + '.png')
            plt.close()


        plt.plot(eigenvalues, 'o')
        plt.savefig(self.outputPath + 'eigenvalues.png')
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_write_dashboard2(): # with text, graphics (encoded and linked), tables, and links
    filename1 = abspath(join(testdir, 'test_write_dashboard2_linked_graphics.html.html'))
    filename2 = abspath(join(testdir, 'test_write_dashboard2_encoded_graphics.html.html'))
    graphics_filename = abspath(join(testdir, 'dashboard_graphic.png'))
    if isfile(filename1):
        os.remove(filename1)
    if isfile(filename2):
        os.remove(filename2)
    if isfile(graphics_filename):
        os.remove(graphics_filename)

    plt.figure()
    plt.plot([1, 2, 3],[1, 2, 3])
    plt.savefig(graphics_filename, format='png')
    plt.close()

    column_names = ['loc1', 'loc2']
    row_names = ['sys1', 'sys2']
    content = {}
    content[('sys1', 'loc1')] = {'text': 'sys1-loc1 text', 
                                 'graphics': [graphics_filename], 
                                 'link': {'Google': 'https://www.google.com', 'Pecos': 'http://pecos.readthedocs.io'} }
    content[('sys1', 'loc2')] = {'text': 'sys1-loc2 text',
                                 'table': pd.DataFrame({'sys1': [1,2,3]}).to_html()}
    content[('sys2', 'loc1')] = {'text': 'sys2-loc1 text',
                                 'graphics': [graphics_filename],
                                 'link': {'Google': 'https://www.google.com', 'Pecos': 'http://pecos.readthedocs.io'} }
    content[('sys2', 'loc2')] = {'text': 'sys2-loc2 text',
                                 'table': pd.DataFrame({'sys2': [2,4,6]}).to_html()}

    pecos.io.write_dashboard(filename1, column_names, row_names, content, encode=False)

    assert_true(isfile(filename1))

    pecos.io.write_dashboard(filename2, column_names, row_names, content, encode=True)

    assert_true(isfile(filename2))
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_scatter1():
    filename = abspath(join(testdir, 'plot_scatter1.png'))
    if isfile(filename):
        os.remove(filename)

    x = pd.DataFrame({'x1' : pd.Series([1., 2., 3.], index=['a', 'b', 'c'])})
    y = pd.DataFrame({'y1' : pd.Series([1., 2., 3.], index=['a', 'b', 'c'])})

    plt.figure()
    pecos.graphics.plot_scatter(x,y,xaxis_min=0.5, xaxis_max=6.5, yaxis_min=0.5, yaxis_max=3.5)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_scatter2():
    filename = abspath(join(testdir, 'plot_scatter2.png'))
    if isfile(filename):
        os.remove(filename)

    x = pd.DataFrame({'x1' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
         'x2' : pd.Series([4., 5., 6.], index=['a', 'b', 'c'])})
    y = pd.DataFrame({'y1' : pd.Series([1., 2., 3.], index=['a', 'b', 'c'])})

    plt.figure()
    pecos.graphics.plot_scatter(x,y,xaxis_min=0.5, xaxis_max=6.5, yaxis_min=0.5, yaxis_max=3.5)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_plot_heatmap2():
    filename = abspath(join(testdir, 'plot_heatmap2.png'))
    if isfile(filename):
        os.remove(filename)

    data = np.array([[1,2],[3,4]])

    plt.figure()
    pecos.graphics.plot_heatmap(data, cmap='jet', show_axis=True)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:DeepMonster    作者:olimastro    | 项目源码 | 文件源码
def animate(y, ndim, cmap) :
    plt.ion()

    if ndim == 5:
        plt.figure()
        plt.show()
        for i in range(y.shape[1]) :
            print "Showing batch", i
            plt.close('all')
            for j in range(y.shape[0]) :
                plt.imshow(y[j,i], interpolation='none', cmap=cmap)
                plt.pause(0.1)

            time.sleep(1)
    else:
        for i in range(y.shape[1]) :
            print "Showing batch", i
            plt.close('all')
            for j in range(y.shape[0]) :
                plt.figure(0)
                plt.imshow(y[j,i], interpolation='none', cmap=cmap)
                plt.figure(1)
                plt.imshow(x[j,i], interpolation='none', cmap=cmap)
                plt.pause(0.2)

            time.sleep(1)
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_debug_grad(debug, tag, fold_exp, trg):
    plt.close("all")
    # f = plt.figure(figsize=(15, 10.8), dpi=300)
    nbr_rows = int(len(debug["grad_sup"][0])/2)
    f, axs = plt.subplots(nbr_rows, 2, sharex=True, sharey=False,
                          figsize=(15, 12.8), dpi=300)

    if trg == "sup":
        grad = np.array(debug["grad_sup"])
    elif trg == "hint":
        grad = np.array(debug["grad_hint"])
    print grad.shape, trg
    j = 0
    for i in range(0, nbr_rows*2, 2):
        w_vl = grad[:, i]
        b_vl = grad[:, i+1]
        axs[j, 0].plot(w_vl, label=trg)
        axs[j, 0].set_title("w"+str(j))
        axs[j, 1].plot(b_vl, label=trg)
        axs[j, 1].set_title("b"+str(j))
        axs[j, 0].grid(True)
        axs[j, 1].grid(True)
        j += 1
    f.suptitle("Grad sup/hint:" + tag, fontsize=8)
    plt.legend()
    f.savefig(fold_exp+"/grad_" + trg + ".png", bbox_inches='tight')
    plt.close("all")
    del f
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_debug_ratio_grad(debug, fold_exp, r="h/s"):
    plt.close("all")
    # f = plt.figure(figsize=(15, 10.8), dpi=300)
    nbr_rows = int(len(debug["grad_sup"][0])/2)
    f, axs = plt.subplots(nbr_rows, 2, sharex=True, sharey=False,
                          figsize=(15, 12.8), dpi=300)

    grads = np.array(debug["grad_sup"])
    gradh = np.array(debug["grad_hint"])
    if gradh.size != grads.size:
        print "Can't calculate the ratio. It looks like you divided the " +\
            "hint batch..."
        return 0
    print gradh.shape, grads.shape
    j = 0
    for i in range(0, nbr_rows*2, 2):
        w_vls = grads[:, i]
        b_vls = grads[:, i+1]
        w_vl_h = gradh[:, i]
        b_vlh = gradh[:, i+1]
        if r == "h/s":
            ratio_w = np.divide(w_vl_h, w_vls)
            ratio_b = np.divide(b_vlh, b_vls)
        elif r == "s/h":
            ratio_w = np.divide(w_vls, w_vl_h)
            ratio_b = np.divide(b_vls, b_vlh)
        else:
            raise ValueError("Either h/s or s/h.")
        axs[j, 0].plot(ratio_w, label=r)
        axs[j, 0].set_title("w"+str(j))
        axs[j, 1].plot(ratio_b, label=r)
        axs[j, 1].set_title("b"+str(j))
        axs[j, 0].grid(True)
        axs[j, 1].grid(True)
        j += 1
    f.suptitle("Ratio gradient: " + r, fontsize=8)
    plt.legend()
    f.savefig(fold_exp+"/ratio_grad_" + r.replace("/", "-") + ".png",
              bbox_inches='tight')
    plt.close("all")
    del f
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_representations(X, y, title):
    """Plot distributions and thier labels."""
    x_min, x_max = np.min(X, 0), np.max(X, 0)
    X = (X - x_min) / (x_max - x_min)

    f = plt.figure(figsize=(15, 10.8), dpi=300)
#    ax = plt.subplot(111)
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(y[i]),
                 color=plt.cm.Set1(y[i] / 10.),
                 fontdict={'weight': 'bold', 'size': 9})

#    if hasattr(offsetbox, 'AnnotationBbox'):
#        # only print thumbnails with matplotlib > 1.0
#        shown_images = np.array([[1., 1.]])  # just something big
#        for i in range(digits.data.shape[0]):
#            dist = np.sum((X[i] - shown_images) ** 2, 1)
#            if np.min(dist) < 4e-3:
#                # don't show points that are too close
#                continue
#            shown_images = np.r_[shown_images, [X[i]]]
#            imagebox = offsetbox.AnnotationBbox(
#                offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
#                X[i])
#            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title)
    return f
项目:WNTR    作者:USEPA    | 项目源码 | 文件源码
def test_plot_network1():
    filename = abspath(join(testdir, 'plot_network1.png'))
    if isfile(filename):
        os.remove(filename)

    inp_file = join(ex_datadir,'Net6.inp')
    wn = wntr.network.WaterNetworkModel(inp_file)

    plt.figure()
    wntr.graphics.plot_network(wn)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:WNTR    作者:USEPA    | 项目源码 | 文件源码
def test_plot_tank_curve1():
    filename = abspath(join(testdir, 'plot_pump_curve1.png'))
    if isfile(filename):
        os.remove(filename)

    inp_file = join(ex_datadir,'Net3.inp')
    wn = wntr.network.WaterNetworkModel(inp_file)
    pump = wn.get_link('10')

    plt.figure()
    wntr.graphics.plot_pump_curve(pump)
    plt.savefig(filename, format='png')
    plt.close()

    assert_true(isfile(filename))
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def generate_setup_template_modify(outputfile='./tdose_setup_template_modify.txt',clobber=False,verbose=True):
    """
    Generate setup text file template for modifying data cubes

    --- INPUT ---
    outputfile      The name of the output which will contain the TDOSE setup template
    clobber         Overwrite files if they exist
    verbose         Toggle verbosity

    --- EXAMPLE OF USE ---
    import tdose_utilities as tu

    filename = './tdose_setup_template_modify_new.txt'
    tu.generate_setup_template_modify(outputfile=filename,clobber=True)
    setup    = tu.load_setup(setupfile=filename)

    """
    if verbose: print ' --- tdose_utilities.generate_setup_template_modify() --- '
    #------------------------------------------------------------------------------------------------------
    if os.path.isfile(outputfile) & (clobber == False):
        sys.exit(' ---> Outputfile already exists and clobber=False ')
    else:
        if verbose: print ' - Will store setup template in '+outputfile
        if os.path.isfile(outputfile) & (clobber == True):
            if verbose: print ' - Output already exists but clobber=True so overwriting it '

        setuptemplate = """
#---------------------------------------------START OF TDOSE MODIFY SETUP---------------------------------------------
#
# Template for TDOSE (http://github.com/kasperschmidt/TDOSE) setup file for modifyinf data cubes
# Generated with tdose_utilities.generate_setup_template_modify() on %s
# Cube modifications are run independent of tdose.perform_extraction() with tdose.modify_cube()
#
# - - - - - - - - - - - - - - - - - - - - - - - - -  MODIFYING CUBE - - - - - - - - - - - - - - - - - - - - - - - - - -
data_cube              /path/datacube.fits                # Path and name of fits file containing data cube to modify
cube_extension         DATA_DCBGC                         # Name or number of fits extension containing data cube
source_model_cube      /path/tdose_source_modelcube.fits  # Path and name of fits file containing source model cube
source_extension       DATA_DCBGC                         # Name or number of fits extension containing source model cube

modyified_cube         tdose_modified_datacube            # Name extension of file containing modified data cube.

modify_sources_list    [1,2,5]                            # List of IDs of sources to remove from data cube using source model cube.
                                                          # For long list of IDs provide path and name of file containing IDs (only)
sources_action         remove                             # Indicate how to modify the data cube. Chose between:
                                                          #    'remove'     Sources in modify_sources_list are removed from data cube
                                                          #    'keep'       All sources except the sources in modify_sources_list are removed from data cube
#----------------------------------------------END OF TDOSE MODIFY SETUP----------------------------------------------

""" % (tu.get_now_string())
        fout = open(outputfile,'w')
        fout.write(setuptemplate)
        fout.close()
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def galfit_model_ds9region(models,regionfileextension='ds9region',regcolor='red',clobber=False,verbose=True):
    """
    Generate DS9 region file to indicate GALFIT components

    --- INPUT ---
    model                  List of GALFIT models to generate region files for
    regionfileextension    Extension for naming the DS9 region file
    regcolor               Color of regions to draw
    clobber                Overwrite existing file?
    verbose                Toggle verbosity

    --- EXAMPLE OF USE ---

    models = glob.glob('/path/to/models/model*.fits')
    tu.galfit_model_ds9region(models,clobber=False)

    """
    Nmodels = len(models)
    if verbose: print ' - Generating DS9 region files for '+str(Nmodels)+' GALFIT models provided '
    for model in models:
        modelhdr   = pyfits.open(model)[2].header
        comkeys    = []
        regionfile = model.replace('.fits','_'+regionfileextension+'.reg')
        for key in modelhdr.keys():
            if 'COMP_' in key:
                comkeys.append(key)

        if os.path.isfile(regionfile):
            if not clobber:
                sys.exit(' ---> File already exists and clobber = False')
        fout = open(regionfile,'w')
        fout.write("# Region file format: DS9 version 4.1 \nimage\n")

        for comp in comkeys:
            compNo = comp.split('OMP_')[-1]
            if not modelhdr[comp] == 'sky':
                XC, XCERR = tu.galfit_getheadervalue(compNo,'XC',modelhdr)
                YC, YCERR = tu.galfit_getheadervalue(compNo,'YC',modelhdr)

                regstr = '# text(%s,%s) color=%s font="times 20 bold roman" text={%s} \n' % (XC,YC,regcolor,compNo)
                fout.write(regstr)

        fout.close()
        if verbose: print ' - Saved region file to \n   '+regionfile

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_fig(values, title, x_str, y_str, path, best_iter, std_vals=None):
    """Plot some values.
    Input:
         values: list or numpy.ndarray of values to plot (y)
         title: string; the title of the plot.
         x_str: string; the name of the x axis.
         y_str: string; the name of the y axis.
         path: string; path where to save the figure.
         best_iter: integer. The epoch of the best iteration.
         std_val: List or numpy.ndarray of standad deviation values that
             corresponds to each value in 'values'.
    """
    floating = 6
    prec = "%." + str(floating) + "f"

    if best_iter >= 0:
        if isinstance(values, list):
            if best_iter >= len(values):
                best_iter = -1
        if isinstance(values, np.ndarray):
            if best_iter >= np.size:
                best_iter = -1

        v = str(prec % np.float(values[best_iter]))
    else:
        v = str(prec % np.float(values[-1]))
        best_iter = -1
    if best_iter == -1:
        best_iter = len(values)
    fig = plt.figure()
    plt.plot(
        values,
        label="lower val: " + v + " at " + str(best_iter) + " " +
        x_str)
    plt.xlabel(x_str)
    plt.ylabel(y_str)
    plt.title(title, fontsize=8)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(path, bbox_inches='tight')
    plt.close('all')
    del fig
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def test_abu_chart(self):
        from nugridpy import utils,ppn,data_plot
        import matplotlib
        matplotlib.use('agg')
        import matplotlib.pylab as mpy
        import os

        # Perform tests within temporary directory
        with TemporaryDirectory() as tdir:
            # wget the data for a ppn run from the CADC VOspace
            n = 3
            for cycle in range(0,n):
                cycle_str = str(cycle).zfill(2)
                os.system("wget -q --content-disposition --directory '" + tdir + "' "
                          + "'http://www.canfar.phys.uvic.ca/vospace/synctrans?TARGET="\
                          + "vos%3A%2F%2Fcadc.nrc.ca%21vospace%2Fnugrid%2Fdata%2Fprojects%2Fppn%2Fexamples%2F"\
                          + "ppn_Hburn_simple%2Fiso_massf000" + cycle_str + ".DAT&DIRECTION=pullFromVoSpace&PROTOCOL"\
                          + "=ivo%3A%2F%2Fivoa.net%2Fvospace%2Fcore%23httpget'")

            # test_data_dir should point to the correct location of a set of abundances data file
            #nugrid_dir= os.path.dirname(os.path.dirname(ppn.__file__))
            #NuPPN_dir= nugrid_dir + "/NuPPN"
            #test_data_dir= NuPPN_dir + "/examples/ppn_C13_pocket/master_results"

            p=ppn.abu_vector(tdir) # TODO: this function fails to raise an exception if path is not found!
            mp=p.get('mod')
            if len(mp) == 0:
                raise IOError("Cannot locate a set of abundance data files")
            sparse=10
            cycles=mp[:1000:sparse]
            form_str='%6.1F'
            form_str1='%4.3F'

            i=0
            for cyc in cycles:
                T9  = p.get('t9',fname=cyc)
                Rho = p.get('rho',fname=cyc)
                mod = p.get('mod',fname=cyc)
                # time= p.get('agej',fname=cyc)*utils.constants.one_year
                time= p.get('agej',fname=cyc)
                mpy.close(i);mpy.figure(i);i += 1
                p.abu_chart(cyc,mass_range=[0,41],plotaxis=[-1,22,-1,22],lbound=(-6,0),show=False)
                mpy.title(str(mod)+' t='+form_str%time+'yr $T_9$='+form_str1%T9+' $\\rho$='+str(Rho))
                png_file='abu_chart_'+str(cyc).zfill(len(str(max(mp))))+'.png'
                mpy.savefig(png_file)
                self.assertTrue(os.path.exists(png_file))
                os.remove(png_file)
项目:TSS_detection    作者:ueser    | 项目源码 | 文件源码
def plot_profiles_to_file(annot, pntr, ups=200, smooth_param=50):
    pp = PdfPages(options.save_path + 'Figures/individual_signals.pdf')
    clrs_ = ['red', 'blue', 'black', 'orange', 'magenta', 'cyan']
    vec_sense = {}
    vec_antisense = {}
    # for qq in tq(range(annot.shape[0])):
    for qq in tq(range(100)):

        chname = annot['chr'].iloc[qq]

        if annot['strand'].iloc[qq] == '+':
            start = annot['start'].iloc[qq] - ups
            stop = annot['end'].iloc[qq]
            for key in pntr.keys():
                vec_sense[key] = pntr[key][0].get_nparray(chname, start, stop - 1)
                vec_antisense[key] = pntr[key][1].get_nparray(chname, start, stop - 1)
            xran = np.arange(start, stop)
        else:
            start = annot['start'].iloc[qq]
            stop = annot['end'].iloc[qq] + ups
            for key in pntr.keys():
                vec_sense[key] = np.flipud(pntr[key][1].get_nparray(chname, start, stop))
                vec_antisense[key] = np.flipud(pntr[key][0].get_nparray(chname, start, stop))
            xran = np.arange(stop, start, -1)

        ax = {}
        fig = pl.figure()
        pl.title(annot['name'].iloc[qq])
        for i, key in enumerate(pntr.keys()):
            sm_vec_se = sm.smooth(vec_sense[key], smooth_param)[(smooth_param - 1):-(smooth_param - 1)]
            sm_vec_as = sm.smooth(vec_antisense[key], smooth_param)[(smooth_param - 1):-(smooth_param - 1)]
            ax[key] = pl.subplot(len(pntr), 1, i+1)
            ax[key].plot(xran, vec_sense[key], label=key, color=clrs_[i], alpha=0.5)
            ax[key].plot(xran, -vec_antisense[key], color=clrs_[i], alpha=0.5)
            ax[key].plot(xran, sm_vec_se,  color=clrs_[i], linewidth=2)
            ax[key].plot(xran, -sm_vec_as, color=clrs_[i], linewidth=2)
            ax[key].legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), fontsize=6, ncol=1)
        pp.savefig()

        pl.close()
    pp.close()
    for pn in pntr.values():
        pn[0].close()
        pn[1].close()
项目:MDI    作者:rafaelvalle    | 项目源码 | 文件源码
def plot_2d(params_dir):
    model_dirs = [name for name in os.listdir(params_dir)
                  if os.path.isdir(os.path.join(params_dir, name))]
    if len(model_dirs) == 0:
      model_dirs = [params_dir]


    colors = plt.get_cmap('plasma')
    plt.figure(figsize=(20, 10))
    ax = plt.subplot(111)
    ax.set_xlabel('Learning Rate')
    ax.set_ylabel('Error rate')

    i = 0
    for model_dir in model_dirs:
        model_df = pd.DataFrame()
        for param_path in glob.glob(os.path.join(params_dir,
                                                 model_dir) + '/*.h5'):
            param = dd.io.load(param_path)
            gd = {'learning rate': param['hyperparameters']['learning_rate'],
                  'momentum': param['hyperparameters']['momentum'],
                  'dropout': param['hyperparameters']['dropout'],
                  'val. objective': param['best_epoch']['validate_objective']}
            model_df = model_df.append(pd.DataFrame(gd, index=[0]),
                                       ignore_index=True)
        if i != len(model_dirs) - 1:
            ax.scatter(model_df['learning rate'],
                       model_df['val. objective'],
                       s=128,
                       marker=(i+3, 0),
                       edgecolor='black',
                       linewidth=model_df['dropout'],
                       label=model_dir,
                       c=model_df['momentum'],
                       cmap=colors)
        else:
            im = ax.scatter(model_df['learning rate'],
                            model_df['val. objective'],
                            s=128,
                            marker=(i+3, 0),
                            edgecolor='black',
                            linewidth=model_df['dropout'],
                            label=model_dir,
                            c=model_df['momentum'],
                            cmap=colors)
        i += 1

    plt.colorbar(im, label='Momentum')
    plt.legend()
    plt.show()
    plt.savefig('{}.eps'.format(os.path.join(IMAGES_DIRECTORY, 'params2d')), format='eps', dpi=1000)
    plt.close()
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotPolicy(self, policy, prefix):
        plt.clf()
        for idx in xrange(len(policy)):
            i, j = self.env.getStateXY(idx)

            dx = 0
            dy = 0
            if policy[idx] == 0: # up
                dy = 0.35
            elif policy[idx] == 1: #right
                dx = 0.35
            elif policy[idx] == 2: #down
                dy = -0.35
            elif policy[idx] == 3: #left
                dx = -0.35
            elif self.matrixMDP[i][j] != -1 and policy[idx] == 4: # termination
                circle = plt.Circle(
                    (j + 0.5, self.numRows - i + 0.5 - 1), 0.025, color='k')
                plt.gca().add_artist(circle)

            if self.matrixMDP[i][j] != -1:
                plt.arrow(j + 0.5, self.numRows - i + 0.5 - 1, dx, dy,
                    head_width=0.05, head_length=0.05, fc='k', ec='k')
            else:
                plt.gca().add_patch(
                    patches.Rectangle(
                    (j, self.numRows - i - 1), # (x,y)
                    1.0,                   # width
                    1.0,                   # height
                    facecolor = "gray"
                    )
                )

        plt.xlim([0, self.numCols])
        plt.ylim([0, self.numRows])


        for i in xrange(self.numCols):
            plt.axvline(i, color='k', linestyle=':')
        plt.axvline(self.numCols, color='k', linestyle=':')

        for j in xrange(self.numRows):
            plt.axhline(j, color='k', linestyle=':')
        plt.axhline(self.numRows, color='k', linestyle=':')

        plt.savefig(self.outputPath + prefix + 'policy.png')
        plt.close()
项目:pecos    作者:sandialabs    | 项目源码 | 文件源码
def test_write_monitoring_report2():# with test results and graphics (encoded and linked)
    filename1 = abspath(join(testdir, 'test_write_monitoring_report2_linked_graphics.html'))
    filename2 = abspath(join(testdir, 'test_write_monitoring_report2_encoded_graphics.html'))
    graphics_filename = abspath(join(testdir, 'custom_graphic.png'))
    if isfile(filename1):
        os.remove(filename1)
    if isfile(filename2):
        os.remove(filename2)
    if isfile(graphics_filename):
        os.remove(graphics_filename)

    pecos.logger.initialize()
    logger = logging.getLogger('pecos')

    pm = pecos.monitoring.PerformanceMonitoring()
    periods = 5
    index = pd.date_range('1/1/2016', periods=periods, freq='H')
    data = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12], [13,14,15]])
    df = pd.DataFrame(data=data, index=index, columns=['A', 'B', 'C'])
    tfilter = pd.Series(data = (df.index < index[3]), index = df.index)
    pm.add_dataframe(df, 'test', True)
    pm.add_time_filter(tfilter)    
    pm.check_range([0,7]) # 2 test failures

    filename_root = abspath(join(testdir, 'monitoring_report_graphic'))
    test_results_graphics = pecos.graphics.plot_test_results(filename_root, pm)

    plt.figure()
    plt.plot([1, 2, 3],[1, 2, 3])
    plt.savefig(graphics_filename, format='png')
    plt.close()
    custom_graphics = [graphics_filename]

    logger.warning('Add a note')

    pecos.io.write_monitoring_report(filename1, pm, test_results_graphics, custom_graphics, encode=False)

    assert_true(isfile(filename1))

    pecos.io.write_monitoring_report(filename2, pm, test_results_graphics, custom_graphics, encode=True)

    assert_true(isfile(filename2))
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def gaussian_twoD_testing():
    """ Implement and check the estimator for a 2D gaussian fit. """

    data = np.empty((121,1))
    amplitude=np.random.normal(3e5,1e5)
    center_x=91+np.random.normal(0,0.8)
    center_y=14+np.random.normal(0,0.8)
    sigma_x=np.random.normal(0.7,0.2)
    sigma_y=np.random.normal(0.7,0.2)
    offset=0
    x = np.linspace(90,92,11)
    y = np.linspace(13,15,12)
    xx, yy = np.meshgrid(x, y)

    axes=(xx.flatten(), yy.flatten())

    theta_here=10./360.*(2*np.pi)

#            data=qudi_fitting.twoD_gaussian_function((xx,yy),*(amplitude,center_x,center_y,sigma_x,sigma_y,theta_here,offset))
    gmod,params = qudi_fitting.make_twoDgaussian_model()

    data = gmod.eval(x=axes, amplitude=amplitude, center_x=center_x,
                     center_y=center_y, sigma_x=sigma_x, sigma_y=sigma_y,
                     theta=theta_here, offset=offset)
    data += 50000*np.random.random_sample(np.shape(data))

    gmod, params = qudi_fitting.make_twoDgaussian_model()

    para=Parameters()
#    para.add('theta',vary=False)
#    para.add('center_x',expr='0.5*center_y')
#    para.add('sigma_x',min=0.2*((92.-90.)/11.), max=   10*(x[-1]-y[0]) )
#    para.add('sigma_y',min=0.2*((15.-13.)/12.), max=   10*(y[-1]-y[0]))
#    para.add('center_x',value=40,min=50,max=100)

    result = qudi_fitting.make_twoDgaussian_fit(xy_axes=axes, data=data)#,add_parameters=para)

#
#            FIXME: What does "Tolerance seems to be too small." mean in message?
#            print(result.message)
    plt.close('all')

    fig, ax = plt.subplots(1, 1)
    ax.hold(True)
    ax.imshow(result.data.reshape(len(y),len(x)),
              cmap=plt.cm.jet, origin='bottom', extent=(x.min(), x.max(),
                                       y.min(), y.max()),interpolation="nearest")
    ax.contour(x, y, result.best_fit.reshape(len(y),len(x)), 8
                , colors='w')
    plt.show()
#    plt.close('all')

    print(result.fit_report())

#            print('Message:',result.message)
项目:learning-class-invariant-features    作者:sbelharbi    | 项目源码 | 文件源码
def plot_fig(values, title, x_str, y_str, path, best_iter, std_vals=None):
    """Plot some values.
    Input:
         values: list or numpy.ndarray of values to plot (y)
         title: string; the title of the plot.
         x_str: string; the name of the x axis.
         y_str: string; the name of the y axis.
         path: string; path where to save the figure.
         best_iter: integer. The epoch of the best iteration.
         std_val: List or numpy.ndarray of standad deviation values that
             corresponds to each value in 'values'.
    """
    floating = 6
    prec = "%." + str(floating) + "f"

    if best_iter >= 0:
        if isinstance(values, list):
            if best_iter >= len(values):
                best_iter = -1
        if isinstance(values, np.ndarray):
            if best_iter >= np.size:
                best_iter = -1

        v = str(prec % np.float(values[best_iter]))
    else:
        v = str(prec % np.float(values[-1]))
        best_iter = -1
    if best_iter == -1:
        best_iter = len(values)
    fig = plt.figure()
    plt.plot(
        values,
        label="lower val: " + v + " at " + str(best_iter) + " " +
        x_str)
    plt.xlabel(x_str)
    plt.ylabel(y_str)
    plt.title(title, fontsize=8)
    plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8})
    plt.grid(True)
    fig.savefig(path, bbox_inches='tight')
    plt.close('all')
    del fig