Python matplotlib.pylab 模块,gca() 实例源码

我们从Python开源项目中,提取了以下21个代码示例,用于说明如何使用matplotlib.pylab.gca()

项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins, data):
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:sdp    作者:tansey    | 项目源码 | 文件源码
def plot_1d(dataset, nbins):
    data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1]
    with sns.axes_style('white'):
        plt.rc('font', weight='bold')
        plt.rc('grid', lw=2)
        plt.rc('lines', lw=3)
        plt.figure(1)
        plt.hist(data, bins=np.arange(nbins+1), color='blue')
        plt.ylabel('Count', weight='bold', fontsize=24)
        xticks = list(plt.gca().get_xticks())
        while (nbins-1) / float(xticks[-1]) < 1.1:
            xticks = xticks[:-1]
        while xticks[0] < 0:
            xticks = xticks[1:]
        xticks.append(nbins-1)
        xticks = list(sorted(xticks))
        plt.gca().set_xticks(xticks)
        plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))])
        plt.legend(loc='upper right')
        plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight')
        plt.clf()
        plt.close()
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotValueFunction(self, valueFunction, prefix):
        '''3d plot of a value function.'''
        fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
        X, Y = np.meshgrid(np.arange(self.numCols), np.arange(self.numRows))
        Z = valueFunction.reshape(self.numRows, self.numCols)

        for i in xrange(len(X)):
            for j in xrange(len(X[i])/2):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

        ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
            cmap = plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(self.outputPath + prefix + 'value_function.png')
        plt.close()
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
项目:ML    作者:saurabhsuman47    | 项目源码 | 文件源码
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def hrd_new(self, input_label="", skip=0):
        """
        plot an HR diagram with options to skip the first N lines and
        add a label string

        Parameters
        ----------
        input_label : string, optional
            Diagram label.  The default is "".
        skip : integer, optional
            Skip the first n lines.  The default is 0.

        """
        xl_old=pyl.gca().get_xlim()
        if input_label == "":
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])
        else:
            my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])+"; "+str(input_label)

        pyl.plot(self.data[skip:,self.cols['log_Teff']-1],self.data[skip:,self.cols['log_L']-1],label = my_label)
        pyl.legend(loc=0)
        xl_new=pyl.gca().get_xlim()
        pyl.xlabel('log Teff')
        pyl.ylabel('log L')
        if any(array(xl_old)==0):
            pyl.gca().set_xlim(max(xl_new),min(xl_new))
        elif any(array(xl_new)==0):
            pyl.gca().set_xlim(max(xl_old),min(xl_old))
        else:
            pyl.gca().set_xlim([max(xl_old+xl_new),min(xl_old+xl_new)])
项目:POT    作者:rflamary    | 项目源码 | 文件源码
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : np.array, shape (na,)
        Source distribution
    b : np.array, shape (nb,)
        Target distribution
    M : np.array, shape (na,nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2)
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotBasisFunctions(self, eigenvalues, eigenvectors):
        '''3d plot of the basis function. Right now I am plotting eigenvectors,
           so each coordinate of the eigenvector correspond to the value to be
           plotted for the correspondent state.''' 
        for i in xrange(len(eigenvalues)):  
            fig, ax = plt.subplots(subplot_kw = dict(projection = '3d'))
            X, Y = np.meshgrid(np.arange(self.numRows), np.arange(self.numCols))
            Z = eigenvectors[:,i].reshape(self.numCols, self.numRows)

            for ii in xrange(len(X)):
                for j in xrange(len(X[ii])/2):
                    tmp = X[ii][j]
                    X[ii][j] = X[ii][len(X[ii]) - j - 1]
                    X[ii][len(X[ii]) - j - 1] = tmp

            my_col = cm.jet(np.random.rand(Z.shape[0],Z.shape[1]))

            ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1,
                cmap = plt.get_cmap('jet'))
            plt.gca().view_init(elev=30, azim=30)
            plt.savefig(self.outputPath + str(i) + '_eig' + '.png')
            plt.close()


        plt.plot(eigenvalues, 'o')
        plt.savefig(self.outputPath + 'eigenvalues.png')
项目:rnn_agreement    作者:TalLinzen    | 项目源码 | 文件源码
def clean_ticks():
    ax = plt.gca()
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
项目:rnn_agreement    作者:TalLinzen    | 项目源码 | 文件源码
def percent_ylabel():
    plt.gca().set_yticklabels(['%d%%' % (x * 100) for
                               x in plt.gca().get_yticks()])
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def plotBoundVsK(KVals=np.arange(1,50),
                 alpha=0.5,
                 gamma=10,
                 labels=None,
                 betaFunc='prior'):
    if labels is None:
        txtlabel = str(alpha)
        labels = [None, None]
    else:
        txtlabel = 'alpha\n' + str(alpha)
    exactVals = np.zeros(len(KVals))
    boundVals = np.zeros(len(KVals))
    for ii, K in enumerate(KVals):
        betaVec = 1.0/(1.0 + gamma) * np.ones(K+1)
        for k in range(1, K):
            betaVec[k] = betaVec[k] * (1 - np.sum(betaVec[:k]))
        betaVec[-1] = 1 - np.sum(betaVec[:-1])
        print betaVec
        assert np.allclose(betaVec.sum(), 1.0)
        exactVals[ii] = cDir_exact(alpha, betaVec)
        boundVals[ii] = cDir_surrogate(alpha, betaVec)
    assert np.all(exactVals >= boundVals)
    pylab.plot(KVals, exactVals,
               'k-', linewidth=LINEWIDTH, label=labels[0])
    pylab.plot(KVals, boundVals,
               'r--', linewidth=LINEWIDTH, label=labels[1])
    index = -1

    pylab.text(KVals[index]+.25, boundVals[index],
        txtlabel, fontsize=LEGENDSIZE-8)
    pylab.xlim([0, np.max(KVals)+7.5])
    pylab.gca().set_xticks([0, 10, 20, 30, 40, 50])
    pylab.xlabel("K", fontsize=FONTSIZE)
    pylab.ylabel("cDir function", fontsize=FONTSIZE)
    pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def makeFigure(hmmKappa=0):
    Data, trueResp = makeDataAndTrueResp()

    kemptyVals = np.asarray([0, 1, 2, 3.])
    ELBOVals = np.zeros_like(kemptyVals, dtype=np.float)

    # Iterate over the number of empty states (0, 1, 2, ...)
    for ii, kempty in enumerate(kemptyVals):
        resp = makeNewRespWithEmptyStates(trueResp, kempty)
        ELBOVals[ii] = resp2ELBO_HDPHMM(Data, resp, hmmKappa=hmmKappa)

    # Make largest value the one with kempty=0, to make plot look good
    ELBOVals -= ELBOVals[0]

    # Plot the results
    from matplotlib import pylab
    figH = pylab.figure(figsize=(6, 4))
    plotargs = dict(markersize=10, linewidth=3)
    pylab.plot(kemptyVals, ELBOVals, 'o--', label='HDP surrogate',
               color='b', markeredgecolor='b',
               **plotargs)
    pylab.xlabel('num. empty topics', fontsize=20)
    pylab.ylabel('change in ELBO', fontsize=20)
    B = 0.25
    pylab.xlim([-B, kemptyVals[-1] + B])
    pylab.xticks(kemptyVals)

    axH = pylab.gca()
    axH.tick_params(axis='both', which='major', labelsize=15)
    legH = pylab.legend(loc='upper left', prop={'size': 15})

    figH.subplots_adjust(bottom=0.16, left=0.2)
    pylab.show(block=True)
项目:3Dreconstruction    作者:alyssaq    | 项目源码 | 文件源码
def plot_projections(points):
    num_images = len(points)

    plt.figure()
    plt.suptitle('3D to 2D Projections', fontsize=16)
    for i in range(num_images):
        plt.subplot(1, num_images, i+1)
        ax = plt.gca()
        ax.set_aspect('equal')
        ax.plot(points[i][0], points[i][1], 'r.')
项目:3Dreconstruction    作者:alyssaq    | 项目源码 | 文件源码
def plot_cube(points3d, title=''):
    fig = plt.figure()
    fig.suptitle(title, fontsize=16)
    ax = fig.gca(projection='3d')
    ax.set_aspect('equal')
    ax.plot(points3d[0], points3d[1], points3d[2], 'b.')
    ax.set_xlabel('x axis')
    ax.set_ylabel('y axis')
    ax.set_zlabel('z axis')
    ax.view_init(elev=135, azim=90)
    return ax
项目:options    作者:mcmachado    | 项目源码 | 文件源码
def plotPolicy(self, policy, prefix):
        plt.clf()
        for idx in xrange(len(policy)):
            i, j = self.env.getStateXY(idx)

            dx = 0
            dy = 0
            if policy[idx] == 0: # up
                dy = 0.35
            elif policy[idx] == 1: #right
                dx = 0.35
            elif policy[idx] == 2: #down
                dy = -0.35
            elif policy[idx] == 3: #left
                dx = -0.35
            elif self.matrixMDP[i][j] != -1 and policy[idx] == 4: # termination
                circle = plt.Circle(
                    (j + 0.5, self.numRows - i + 0.5 - 1), 0.025, color='k')
                plt.gca().add_artist(circle)

            if self.matrixMDP[i][j] != -1:
                plt.arrow(j + 0.5, self.numRows - i + 0.5 - 1, dx, dy,
                    head_width=0.05, head_length=0.05, fc='k', ec='k')
            else:
                plt.gca().add_patch(
                    patches.Rectangle(
                    (j, self.numRows - i - 1), # (x,y)
                    1.0,                   # width
                    1.0,                   # height
                    facecolor = "gray"
                    )
                )

        plt.xlim([0, self.numCols])
        plt.ylim([0, self.numRows])


        for i in xrange(self.numCols):
            plt.axvline(i, color='k', linestyle=':')
        plt.axvline(self.numCols, color='k', linestyle=':')

        for j in xrange(self.numRows):
            plt.axhline(j, color='k', linestyle=':')
        plt.axhline(self.numRows, color='k', linestyle=':')

        plt.savefig(self.outputPath + prefix + 'policy.png')
        plt.close()
项目:molPX    作者:markovmodel    | 项目源码 | 文件源码
def _plot_ND_FES(data, ax_labels, weights=None, bins=50, figsize=(4,4)):
    r""" A wrapper for pyemmas FESs plotting function that can also plot 1D

    Parameters
    ----------

    data : list of numpy nd.arrays

    ax_labels : list

    Returns
    -------

    ax : :obj:`pylab.Axis` object

    FES_data : numpy nd.array containing the FES (only for 1D data)

    edges : tuple containimg the axes along which FES is to be plotted (only in the 1D case so far, else it's None)

    """

    _plt.figure(figsize=figsize)
    ax = _plt.gca()
    idata = _np.vstack(data)
    ax.set_xlabel(ax_labels[0])
    if idata.shape[1] == 1:
        h, edges = _np.histogramdd(idata, weights=weights, bins=bins, normed=True)
        FES_data = -_np.log(h)
        FES_data -= FES_data.min()
        ax.plot(edges[0][:-1], FES_data)
        ax.set_ylabel('$\Delta G / \kappa T $')

    elif idata.shape[1] == 2:
        _plot_free_energy(idata[:,0], idata[:,1], weights=weights, nbins=bins, ax=ax,
                          cmap='nipy_spectral'
                           )
        ax.set_ylabel(ax_labels[1])
        edges, FES_data = [None], None
        # TODO: retrieve the actual edges from pyemma's "plot_free_energy"'s axes
    else:
        raise NotImplementedError('Can only plot 1D or 2D FESs, but data has %s columns' % _np.shape(idata)[0])

    return ax, FES_data, edges
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def makeFigure(**kwargs):
    Data, trueResp = makeDataAndTrueResp(**kwargs)

    kemptyVals = np.asarray([0, 1, 2, 3.])
    ELBOVals = np.zeros_like(kemptyVals, dtype=np.float)
    PointEstELBOVals = np.zeros_like(kemptyVals, dtype=np.float)

    # Iterate over the number of empty states (0, 1, 2, ...)
    for ii, kempty in enumerate(kemptyVals):
        resp = makeNewRespWithEmptyStates(trueResp, kempty)
        PointEstELBOVals[ii] = resp2ELBO_HDPTopicModel(
            Data,
            resp,
            doPointEstimate=1,
            **kwargs)
        ELBOVals[ii] = resp2ELBO_HDPTopicModel(Data, resp, **kwargs)

    # Make largest value the one with kempty=0, to make plot look good
    PointEstELBOVals -= PointEstELBOVals[0]
    ELBOVals -= ELBOVals[0]

    # Rescale so that yaxis has units on order of 1, not 0.001
    scale = np.max(np.abs(ELBOVals))
    ELBOVals /= scale
    PointEstELBOVals /= scale

    # Set buffer-space for defining plotable area
    xB = 0.25
    B = 0.19  # big buffer for sides where we will put text labels
    b = 0.01  # small buffer for other sides
    TICKSIZE = 30
    FONTSIZE = 40
    LEGENDSIZE = 30
    LINEWIDTH = 4

    # Plot the results
    figH = pylab.figure(figsize=(9.1, 6))
    axH = pylab.subplot(111)
    axH.set_position([xB, B, (1 - xB - b), (1 - B - b)])

    plotargs = dict(markersize=20, linewidth=LINEWIDTH)
    pylab.plot(kemptyVals, PointEstELBOVals, 'v-', label='HDP point est',
               color='b', markeredgecolor='b',
               **plotargs)
    pylab.plot(kemptyVals, np.zeros_like(kemptyVals), 's:', label='HDP exact',
               color='g', markeredgecolor='g',
               **plotargs)
    pylab.plot(kemptyVals, ELBOVals, 'o--', label='HDP surrogate',
               color='r', markeredgecolor='r',
               **plotargs)

    pylab.xlabel('num. empty topics', fontsize=FONTSIZE)
    pylab.ylabel('change in ELBO', fontsize=FONTSIZE)
    xB = 0.25
    pylab.xlim([-xB, kemptyVals[-1] + xB])
    pylab.xticks(kemptyVals)
    pylab.yticks([-1, 0, 1])

    axH = pylab.gca()
    axH.tick_params(axis='both', which='major', labelsize=TICKSIZE)
    legH = pylab.legend(loc='upper left', prop={'size': LEGENDSIZE})
项目:bnpy    作者:bnpy    | 项目源码 | 文件源码
def illustrate(Colors=Colors):
    if hasattr(Colors, 'colors'):
        Colors = Colors.colors

    from matplotlib import pylab
    rcParams = pylab.rcParams
    rcParams['pdf.fonttype'] = 42
    rcParams['ps.fonttype'] = 42
    rcParams['text.usetex'] = False
    rcParams['xtick.labelsize'] = 20
    rcParams['ytick.labelsize'] = 20
    rcParams['legend.fontsize'] = 25

    import bnpy

    Data = get_data(T=1000, nDocTotal=8)
    for k in xrange(K):
        zmask = Data.TrueParams['Z'] == k
        pylab.plot(Data.X[zmask, 0], Data.X[zmask, 1], '.', color=Colors[k],
                   markeredgecolor=Colors[k],
                   alpha=0.4)

        sigEdges = np.flatnonzero(transPi[k] > 0.0001)
        for j in sigEdges:
            if j == k:
                continue
            dx = mus[j, 0] - mus[k, 0]
            dy = mus[j, 1] - mus[k, 1]
            pylab.arrow(mus[k, 0], mus[k, 1],
                        0.8 * dx,
                        0.8 * dy,
                        head_width=2, head_length=4,
                        facecolor=Colors[k], edgecolor=Colors[k])

            tx = 0 - mus[k, 0]
            ty = 0 - mus[k, 1]
            xy = (mus[k, 0] - 0.2 * tx, mus[k, 1] - 0.2 * ty)
            '''
            pylab.annotate( u'\u27F2',
                      xy=(mus[k,0], mus[k,1]),
                     color=Colors[k],
                     fontsize=35,
                    )
            '''
            pylab.gca().yaxis.set_ticks_position('left')
            pylab.gca().xaxis.set_ticks_position('bottom')

            pylab.axis('image')
            pylab.ylim([-38, 38])
            pylab.xlim([-38, 38])