Python matplotlib.pylab 模块,colorbar() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用matplotlib.pylab.colorbar()

项目:gcForest    作者:kingfengji    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
项目:genrec    作者:kkanellis    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, plot_title, filename, genres=None):
    if not genres:
        genres = GENRES

    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=100.0)

    axes = pylab.axes()
    axes.set_xticks(range(len(genres)))
    axes.set_xticklabels(genres, rotation=45)

    axes.set_yticks(range(len(genres)))
    axes.set_yticklabels(genres)
    axes.xaxis.set_ticks_position("bottom")

    pylab.title(plot_title, fontsize=14)
    pylab.colorbar()
    pylab.xlabel('Predicted class', fontsize=12)
    pylab.ylabel('Correct class', fontsize=12)
    pylab.grid(False)
    #pylab.show()
    pylab.savefig(os.path.join(PLOTS_DIR, "cm_%s.eps" % filename), bbox_inches="tight")
项目:gcforest    作者:w821881341    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None):
    from matplotlib import pylab
    cm = np.asarray(cm, dtype=np.float32)
    for i, row in enumerate(cm):
        cm[i] = cm[i] / np.sum(cm[i])
    #import matplotlib.pyplot as plt
    #plt.ion()
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(label_list)))
    ax.set_xticklabels(label_list, rotation='vertical')
    ax.xaxis.set_ticks_position('bottom')
    ax.set_yticks(range(len(label_list)))
    ax.set_yticklabels(label_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig('test.jpg')
    pylab.show()
项目:uai2017_learning_to_acquire_information    作者:evanthebouncy    | 项目源码 | 文件源码
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
项目:uai2017_learning_to_acquire_information    作者:evanthebouncy    | 项目源码 | 文件源码
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
项目:uai2017_learning_to_acquire_information    作者:evanthebouncy    | 项目源码 | 文件源码
def draw(m, name, extra=None):
  FIG.clf()

  matrix = m
  orig_shape = np.shape(matrix)
  # lose the channel shape in the end of orig_shape
  new_shape = orig_shape[:-1] 
  matrix = np.reshape(matrix, new_shape)
  ax = FIG.add_subplot(1,1,1)
  ax.set_aspect('equal')
  plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.gray)
  # plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
  plt.colorbar()

  if extra != None:
    greens, reds = extra
    grn_x, grn_y, = greens
    red_x, red_y = reds
    plt.scatter(x=grn_x, y=grn_y, c='g', s=40)
    plt.scatter(x=red_x, y=red_y, c='r', s=40)
#  # put a blue dot at (10, 20)
#  plt.scatter([10], [20])
#  # put a red dot, size 40, at 2 locations:
#  plt.scatter(x=[3, 4], y=[5, 6], c='r', s=40)
#  # plt.plot()

  plt.savefig(name)
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def plot_earth_model(self,type='perturbation'):
      if(type=='model'):
         plt.pcolor(self.theta, self.radius, self.vs_array)
         plt.colorbar()
         plt.show()
      elif(type=='perturbation'):
         plt.pcolor(self.theta, self.radius, self.dvs_array)
         plt.colorbar()
         plt.show()
项目:geepee    作者:thangbui    | 项目源码 | 文件源码
def plot_model_no_control(model, plot_title='', name_suffix=''):
    # plot function
    mx, vx = model.get_posterior_x()
    mins = np.min(mx, axis=0) - 0.5
    maxs = np.max(mx, axis=0) + 0.5
    nGrid = 50
    xspaced = np.linspace(mins[0], maxs[0], nGrid)
    yspaced = np.linspace(mins[1], maxs[1], nGrid)
    xx, yy = np.meshgrid(xspaced, yspaced)
    Xplot = np.vstack((xx.flatten(), yy.flatten())).T
    mf, vf = model.predict_f(Xplot)
    fig = plt.figure()
    plt.imshow((mf[:, 0]).reshape(*xx.shape),
               vmin=mf.min(), vmax=mf.max(), origin='lower',
               extent=[mins[0], maxs[0], mins[1], maxs[1]], aspect='auto')
    plt.colorbar()
    plt.contour(
        xx, yy, (mf[:, 0]).reshape(*xx.shape),
        colors='k', linewidths=2, zorder=100)
    zu = model.dyn_layer.zu
    plt.plot(zu[:, 0], zu[:, 1], 'wo', mew=0, ms=4)
    for i in range(mx.shape[0] - 1):
        plt.plot(mx[i:i + 2, 0], mx[i:i + 2, 1],
                 '-bo', ms=3, linewidth=2, zorder=101)
    plt.xlabel(r'$x_{t, 1}$')
    plt.ylabel(r'$x_{t, 2}$')
    plt.xlim([mins[0], maxs[0]])
    plt.ylim([mins[1], maxs[1]])
    plt.title(plot_title)
    plt.savefig('/tmp/hh_gpssm_dim_0' + name_suffix + '.pdf')

    fig = plt.figure()
    plt.imshow((mf[:, 1]).reshape(*xx.shape),
               vmin=mf.min(), vmax=mf.max(), origin='lower',
               extent=[mins[0], maxs[0], mins[1], maxs[1]], aspect='auto')
    plt.colorbar()
    plt.contour(
        xx, yy, (mf[:, 1]).reshape(*xx.shape),
        colors='k', linewidths=2, zorder=100)
    zu = model.dyn_layer.zu
    plt.plot(zu[:, 0], zu[:, 1], 'wo', mew=0, ms=4)
    for i in range(mx.shape[0] - 1):
        plt.plot(mx[i:i + 2, 0], mx[i:i + 2, 1],
                 '-bo', ms=3, linewidth=2, zorder=101)
    plt.xlabel(r'$x_{t, 1}$')
    plt.ylabel(r'$x_{t, 2}$')
    plt.xlim([mins[0], maxs[0]])
    plt.ylim([mins[1], maxs[1]])
    plt.title(plot_title)
    plt.savefig('/tmp/hh_gpssm_dim_1' + name_suffix + '.pdf')
项目:MDI    作者:rafaelvalle    | 项目源码 | 文件源码
def plot_2d(params_dir):
    model_dirs = [name for name in os.listdir(params_dir)
                  if os.path.isdir(os.path.join(params_dir, name))]
    if len(model_dirs) == 0:
      model_dirs = [params_dir]


    colors = plt.get_cmap('plasma')
    plt.figure(figsize=(20, 10))
    ax = plt.subplot(111)
    ax.set_xlabel('Learning Rate')
    ax.set_ylabel('Error rate')

    i = 0
    for model_dir in model_dirs:
        model_df = pd.DataFrame()
        for param_path in glob.glob(os.path.join(params_dir,
                                                 model_dir) + '/*.h5'):
            param = dd.io.load(param_path)
            gd = {'learning rate': param['hyperparameters']['learning_rate'],
                  'momentum': param['hyperparameters']['momentum'],
                  'dropout': param['hyperparameters']['dropout'],
                  'val. objective': param['best_epoch']['validate_objective']}
            model_df = model_df.append(pd.DataFrame(gd, index=[0]),
                                       ignore_index=True)
        if i != len(model_dirs) - 1:
            ax.scatter(model_df['learning rate'],
                       model_df['val. objective'],
                       s=128,
                       marker=(i+3, 0),
                       edgecolor='black',
                       linewidth=model_df['dropout'],
                       label=model_dir,
                       c=model_df['momentum'],
                       cmap=colors)
        else:
            im = ax.scatter(model_df['learning rate'],
                            model_df['val. objective'],
                            s=128,
                            marker=(i+3, 0),
                            edgecolor='black',
                            linewidth=model_df['dropout'],
                            label=model_dir,
                            c=model_df['momentum'],
                            cmap=colors)
        i += 1

    plt.colorbar(im, label='Momentum')
    plt.legend()
    plt.show()
    plt.savefig('{}.eps'.format(os.path.join(IMAGES_DIRECTORY, 'params2d')), format='eps', dpi=1000)
    plt.close()
项目:turbo_seti    作者:UCBerkeleySETI    | 项目源码 | 文件源码
def plot_waterfall(fil, f_start=None, f_stop=None, if_id=0, logged=True,cb=False,freq_label=False,MJD_time=False, **kwargs):
    """ Plot waterfall of data

    Args:
        f_start (float): start frequency, in MHz
        f_stop (float): stop frequency, in MHz
        logged (bool): Plot in linear (False) or dB units (True),
        cb (bool): for plotting the colorbar
        kwargs: keyword args to be passed to matplotlib imshow()
    """

    matplotlib.rc('font', **font)

    plot_f, plot_data = fil.grab_data(f_start, f_stop, if_id)

    # Make sure waterfall plot is under 4k*4k
    dec_fac_x, dec_fac_y = 1, 1
    if plot_data.shape[0] > MAX_IMSHOW_POINTS[0]:
        dec_fac_x = plot_data.shape[0] / MAX_IMSHOW_POINTS[0]

    if plot_data.shape[1] > MAX_IMSHOW_POINTS[1]:
        dec_fac_y =  plot_data.shape[1] /  MAX_IMSHOW_POINTS[1]

    plot_data = rebin(plot_data, dec_fac_x, dec_fac_y)

    if MJD_time:
        extent=(plot_f[0], plot_f[-1], fil.timestamps[-1], fil.timestamps[0])
    else:
        extent=(plot_f[0], plot_f[-1], (fil.timestamps[-1]-fil.timestamps[0])*24.*60.*60, 0.0)

    this_plot = plt.imshow(plot_data,
        aspect='auto',
        rasterized=True,
        interpolation='nearest',
        extent=extent,
        cmap='viridis_r',
        **kwargs
    )
    if cb:
        plt.colorbar()

    if freq_label:
        plt.xlabel("Frequency [Hz]",fontdict=font)
    if MJD_time:
        plt.ylabel("Time [MJD]",fontdict=font)
    else:
        plt.ylabel("Time [s]",fontdict=font)

    return this_plot