我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.figure()。
def showData(self): print('???,????···') mask = imread(self.picfile) imgcolor = ImageColorGenerator(mask) wcc = WordCloud(font_path='./msyhl.ttc', mask=mask, background_color='white', max_font_size=200, max_words=300, color_func=imgcolor ) wc = wcc.generate_from_frequencies(self.data) plt.figure() plt.imshow(wc) plt.axis('off') print('?????') plt.show()
def plot_counts(counts, gene_type): """Plot expression counts. Return a Figure object""" import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns import numpy as np fig = plt.figure(figsize=((50 + len(counts) * 5) / 25.4, 210/25.4)) matplotlib.rcParams.update({'font.size': 14}) ax = fig.gca() ax.set_title('{} gene usage'.format(gene_type)) ax.set_xlabel('{} gene'.format(gene_type)) ax.set_ylabel('Count') ax.set_xticks(np.arange(len(counts)) + 0.5) ax.set_xticklabels(counts.index, rotation='vertical') ax.grid(axis='x') ax.set_xlim((-0.25, len(counts))) ax.bar(np.arange(len(counts)), counts['count']) fig.set_tight_layout(True) return fig
def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None): fig = pylab.figure() ax = fig.add_subplot(1, 1, 1) for n in xrange(0, trigger_snippets.shape[2]): y = trigger_snippets[:, elec_index, n] x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1) b = 0.5 + 0.5 * numpy.random.rand() ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid') ax.grid(True) ax.set_xlim([numpy.amin(x), numpy.amax(x)]) ax.set_xlabel("time") ax.set_ylabel("amplitude") if save is None: pylab.show() else: pylab.savefig(save) pylab.close(fig) return
def view_dataset(X, color='blue', title=None, save=None): n_components = 2 pca = PCA(n_components) pca.fit(X) x = pca.transform(X) fig = pylab.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1) ax.grid(True) if title is None: ax.set_title("Dataset ({} samples)".format(X.shape[0])) else: ax.set_title(title + " ({} samples)".format(X.shape[0])) ax.set_xlabel("1st component") ax.set_ylabel("2nd component") if save is None: pylab.show() else: pylab.savefig(save) pylab.close(fig) return
def view_loss_curve(losss, title=None, save=None): '''Plot loss curve''' x_min = 1 x_max = len(losss) - 1 fig = pylab.figure() ax = fig.gca() ax.semilogy(range(x_min, x_max + 1), losss[1:], color='blue', linestyle='solid') ax.grid(True, which='both') if title is None: ax.set_title("Loss curve") else: ax.set_title(title) ax.set_xlabel("iteration") ax.set_ylabel("loss") ax.set_xlim([x_min - 1, x_max + 1]) if save is None: pylab.show() else: pylab.savefig(save) pylab.close(fig) return
def plot_eigenvectors(Vh, U, mytitle, which = [0,1,2,5,10,15]): assert len(which) % 3 == 0 nrows = len(which) / 3 subplot_loc = nrows*100 + 30 plt.figure(figsize=(18,4*nrows)) title_stamp = mytitle + " {0}" u = dl.Function(Vh) counter=1 for i in which: assert i < U.shape[1] Ui = U[:,i] if Ui[0] >= 0: s = 1./np.linalg.norm(Ui, np.inf) else: s = -1./np.linalg.norm(Ui, np.inf) u.vector().set_local(s*Ui) plot(u, subplot_loc=(subplot_loc+counter), mytitle=title_stamp.format(i), vmin=-1, vmax=1) counter = counter+1
def _create_figure(predictions_dict): """Creates and returns a new figure that visualizes attention scores for for a single model predictions. """ # Find out how long the predicted sequence is target_words = list(predictions_dict["predicted_tokens"]) prediction_len = _get_prediction_length(predictions_dict) # Get source words source_len = predictions_dict["features.source_len"] source_words = predictions_dict["features.source_tokens"][:source_len] # Plot fig = plt.figure(figsize=(8, 8)) plt.imshow( X=predictions_dict["attention_scores"][:prediction_len, :source_len], interpolation="nearest", cmap=plt.cm.Blues) plt.xticks(np.arange(source_len), source_words, rotation=45) plt.yticks(np.arange(prediction_len), target_words, rotation=-45) fig.tight_layout() return fig
def analyze(context=None, results=None): import matplotlib.pyplot as plt import logbook logbook.StderrHandler().push_application() log = logbook.Logger('Algorithm') fig = plt.figure() ax1 = fig.add_subplot(211) results.algorithm_period_return.plot(ax=ax1,color='blue',legend=u'????') ax1.set_ylabel(u'??') results.benchmark_period_return.plot(ax=ax1,color='red',legend=u'????') plt.show() # capital_base is the base value of capital #
def conv1(model): n1, n2, x, y, z = model.conv1.W.shape fig = plt.figure() for nn in range(0, n1): ax = fig.add_subplot(4, 5, nn+1, projection='3d') ax.set_xlim(0.0, x) ax.set_ylim(0.0, y) ax.set_zlim(0.0, z) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) for xx in range(0, x): for yy in range(0, y): for zz in range(0, z): max = np.max(model.conv1.W.data[nn, :]) min = np.min(model.conv1.W.data[nn, :]) step = (max - min) / 1.0 C = (model.conv1.W.data[nn, 0, xx, yy, zz] - min) / step color = cm.cool(C) C = abs(1.0 - C) ax.plot(np.array([xx]), np.array([yy]), np.array([zz]), "o", color=color, ms=7.0*C, mew=0.1) plt.savefig("result/graph_conv1.png")
def plot_events_with_event_scores(gt_event_scores, detected_event_scores, ground_truth_events, detected_events, show=True): fig = plt.figure(figsize=(10, 3)) for i in range(len(detected_events)): d = detected_events[i] plt.axvspan(d[0], d[1], 0, 0.5) plt.text((d[1] + d[0]) / 2, 0.2, detected_event_scores[i], horizontalalignment='center', verticalalignment='center') for i in range(len(ground_truth_events)): gt = ground_truth_events[i] plt.axvspan(gt[0], gt[1], 0.5, 1) plt.text((gt[1] + gt[0]) / 2, 0.8, gt_event_scores[i], horizontalalignment='center', verticalalignment='center') plt.tight_layout() if show: plt.show() else: plt.draw()
def plot_labeled_images_random(image_list, label_list, categories, n, title_str, ypixels, xpixels, seed, filename): random.seed(seed) index_sample = random.sample(range(len(image_list)), n) plt.figure(figsize=(2*n, 2)) #plt.suptitle(title_str) for i, ind in enumerate(index_sample): ax = plt.subplot(1, n, i + 1) plt.imshow(image_list[ind].reshape(ypixels, xpixels)) plt.gray() ax.set_title(categories[label_list[ind]], fontsize=20) ax.get_xaxis().set_visible(False); ax.get_yaxis().set_visible(False) if 1: pylab.savefig(filename, bbox_inches='tight') else: plt.show() # plot_unlabeled_images_random: plots unlabeled images at random
def plot_unlabeled_images_random(image_list, n, title_str, ypixels, xpixels, seed, filename): random.seed(seed) index_sample = random.sample(range(len(image_list)), n) plt.figure(figsize=(2*n, 2)) plt.suptitle(title_str) for i, ind in enumerate(index_sample): ax = plt.subplot(1, n, i + 1) plt.imshow(image_list[ind].reshape(ypixels, xpixels)) plt.gray() ax.get_xaxis().set_visible(False); ax.get_yaxis().set_visible(False) if 1: pylab.savefig(filename, bbox_inches='tight') else: plt.show() # plot_compare: given test images and their reconstruction, we plot them for visual comparison
def plot_compare(x_test, decoded_imgs, filename): n = 10 plt.figure(figsize=(2*n, 4)) for i in range(n): # display original ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + 1 + n) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) if 1: pylab.savefig(filename, bbox_inches='tight') else: plt.show() # plot_img: plots greyscale image
def plot_traing_info(x, ylist, path): """ Loads log file and plot x and y values as provided by input. Saves as <path>/train_log.png """ file_name = os.path.join(path, __train_log_file_name) try: with open(file_name, "rb") as f: log = pickle.load(f) except IOError: # first time warnings.warn("There is no {} file here!!!".format(file_name)) return plt.figure() x_vals = log[x] for y in ylist: y_vals = log[y] if len(y_vals) != len(x_vals): warning.warn("One of y's: {} does not have the same length as x:{}".format(y, x)) plt.plot(x_vals, y_vals, label=y) # assert len(y_vals) == len(x_vals), "not the same len" plt.xlabel(x) plt.legend() #plt.show() plt.savefig(file_name[:-3]+'png', bbox_inches='tight') plt.close('all')
def plot_spectra(results): plt.figure(figsize=(10, 4)) plt.imshow( np.concatenate( [np.flipud(results['x'].T), np.flipud(results['xh'].T), np.flipud(results['x_conv'].T)], 0), aspect='auto', cmap='jet', ) plt.colorbar() plt.title('Upper: Real input; Mid: Reconstrution; Lower: Conversion to target.') plt.savefig( os.path.join( args.logdir, '{}.png'.format( os.path.split(str(results['f'], 'utf-8'))[-1] ) ) )
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys, block=True): # Colormaps: jet, Greys cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap) # Show confidences for i, cas in enumerate(cm): for j, c in enumerate(cas): if c > 0: plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000') f = plt.figure(1) f.clf() plt.title(title) plt.colorbar() tick_marks = np.arange(len(target_names)) plt.xticks(tick_marks, target_names, rotation=45) plt.yticks(tick_marks, target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show(block=block)
def plot_single_day_traffic(df): y_tj_l1 = df["tj_level1_count"] y_tj_l2 = df["tj_level2_count"] y_tj_l3 = df["tj_level3_count"] y_tj_l4 = df["tj_level4_count"] x_time = df["time"] x_district = df["district"] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x_time, x_district, y_tj_l1, ) #ax.plot_surface(x_time, x_district, y_tj_l1) print(plt.get_backend()) plt.show() plt.savefig("plot_traffic.png")
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)): noise = np.random.normal(0,1,size=(example,randomDim)) generatedImage = generator.predict(noise) generatedImage = generatedImage.reshape(example,28,28) plt.figure(figsize=figsize) for i in range(example): plt.subplot(dim[0],dim[1],i+1) plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray') '''drop the x and y axis''' plt.axis('off') plt.tight_layout() if not os.path.exists('generated_image'): os.mkdir('generated_image') plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
def plot_3D(img, threshold=-400): verts, faces = measure.marching_cubes(img, threshold) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') mesh = Poly3DCollection(verts[faces], alpha=0.1) face_color = [0.5, 0.5, 1] mesh.set_facecolor(face_color) ax.add_collection3d(mesh) ax.set_xlim(0, img.shape[0]) ax.set_ylim(0, img.shape[1]) ax.set_zlim(0, img.shape[2]) plt.show()
def scatter2d(x,y,title='2dscatterplot',xlabel=None,ylabel=None): fig=plt.figure() plt.scatter(x,y) plt.title(title) if xlabel: plt.xlabel(xlabel) if ylabel: plt.ylabel(ylabel) if not 0<=np.min(x)<=np.max(x)<=1: raise ValueError('summary_scatter2d title:',title,' input x exceeded [0,1] range.\ min:',np.min(x),' max:',np.max(x)) if not 0<=np.min(y)<=np.max(y)<=1: raise ValueError('summary_scatter2d title:',title,' input y exceeded [0,1] range.\ min:',np.min(y),' max:',np.max(y)) plt.xlim([0,1]) plt.ylim([0,1]) return fig
def analyseparamsneighbourhood(svdata, params, includejumps, randomstate): parameterndarray = transformparameterndarray(np.array(params), includejumps) offsets = np.linspace(-.5, .5, 10) for dimension in range(params.dimensioncount): xs, ys = [], [] parametername = params.getdimensionname(dimension) print('Perturbing %s...' % parametername) for offset in offsets: newparameterndarray = np.copy(parameterndarray) newparameterndarray[dimension] += offset xs.append(inversetransformparameterndarray(newparameterndarray, includejumps)[dimension]) y = runsvljparticlefilter(svdata, sv.Params(*inversetransformparameterndarray(newparameterndarray, includejumps)), randomstate).stochfilter.loglikelihood ys.append(y) fig = plt.figure() plot = fig.add_subplot(111) plot.plot(xs, ys) plot.axvline(x=inversetransformparameterndarray(parameterndarray, includejumps)[dimension], color='red') plot.set_xlabel(parametername) plot.set_ylabel('loglikelihood') plt.show()
def make_benchmark_figure(): fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(1, 1, 1, xscale='linear', yscale='log') d1 = np.load('./data/random_data_benchmark.npy') d2 = np.load('./data/real_data_benchmark.npy') d3 = np.load('./data/real_data_orange3_benchmark.npy') ax.scatter(d1[:24, 0], d1[:24, 2], c='r', edgecolor='none', label='Random Data (Polo)') ax.scatter(d2[:24, 0], d2[:24, 2], c='green', edgecolor='none', label='Gene expression data (Polo)') ax.scatter(d3[:24, 0], d3[:24, 2], c='blue', edgecolor='none', label='Gene expression data (Orange3)') ax.legend(loc=2) ax.grid('on') ax.set_xlabel('log2(Number of leaves)') ax.set_ylabel('Run time, seconds') fig.tight_layout() fig.savefig('data/bench.png', dpi=75)
def on_train_begin(self, logs={}): sns.set_style("whitegrid") sns.set_style("whitegrid", {"grid.linewidth": 0.5, "lines.linewidth": 0.5, "axes.linewidth": 0.5}) flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] sns.set_palette(sns.color_palette(flatui)) # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] # sns.set_palette(sns.color_palette("Set2", 10)) plt.ion() # set plot to animated self.fig = plt.figure( figsize=(self.width * (1 + len(self.get_metrics(logs))), self.height)) # width, height in inches # move it to the upper left corner move_figure(self.fig, 25, 25)
def on_train_begin(self, logs={}): for layer in self.get_trainable_layers(): for param in self.parameters: if any(w for w in layer.weights if param in w.name.split("_")): name = layer.name + "_" + param self.layers_stats[name]["values"] = numpy.asarray( []).ravel() for s in self.stats: self.layers_stats[name][s] = [] # plt.style.use('ggplot') plt.ion() # set plot to animated width = 3 * (1 + len(self.stats)) height = 2 * len(self.layers_stats) self.fig = plt.figure( figsize=(width, height)) # width, height in inches # sns.set_style("whitegrid") # self.draw_plot()
def test_point_projects_to_edge(self): # p = (114.83299055, 26.8892277) p = (121.428387, 31.027371) a = time.time() edges, segments = self.sg.point_projects_to_edges(p, 0.01) print(time.time() - a) if self.show_plots: plt.figure() s2g.plot_lines(MultiLineString(segments), color='orange') # original roads for i in range(0, len(edges)): s, e = edges[i] sxy = self.sg.node_xy[s] exy = self.sg.node_xy[e] plt.plot([sxy[0], exy[0]], [sxy[1], exy[1]], color='green') # graph edges plt.plot(p[0], p[1], color='red', markersize=12, marker='o') # bridges plt.show()
def plotBestFit(weights): import matplotlib.pyplot as plt dataMat, labelMat = loadDataSet() dataArr = array(dataMat) n = shape(dataArr)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i]) == 1: xcord1.append(dataArr[i, 1]);ycord1.append(dataArr[i, 2]) else: xcord2.append(dataArr[i, 1]);ycord2.append(dataArr[i, 2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='green') x = arange(-3.0, 3.0, 0.1) y = (-weights[0]-weights[1]*x)/weights[2] # ?????? ax.plot(x, y) plt.xlabel('X1');plt.ylabel('X2') plt.show() # ??500???
def createPlot(inTree): fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[], yticks=[]) createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0; plotTree(inTree, (0.5,1.0), '') plt.show() # def createPlot(): # fig = plt.figure(1, facecolor='white') # fig.clf() # createPlot.ax1 = plt.subplot(111, frameon=True) # plotNode(U'a decision node',(0.5,0.1), (0.1,0.5), decisionNode) # plotNode(U'a leaf node',(0.8,0.1), (0.3,0.8), leafNode) # plt.show()
def plotValResults(self, save_path=None, label=None): if label is not None: accs = self.training_val_results['acc'][label] aucs = self.training_val_results['auc'][label] else: accs = self.training_val_results['acc'] aucs = self.training_val_results['auc'] plt.figure() plt.plot([i * ACCURACY_LOGGED_EVERY_N_STEPS for i in range(len(accs))], accs) plt.plot([i * ACCURACY_LOGGED_EVERY_N_STEPS for i in range(len(aucs))], aucs) plt.xlabel('Training step') plt.ylabel('Validation accuracy') plt.legend(['Accuracy','AUC']) if save_path is None: plt.show() else: plt.savefig(save_path) plt.close()
def plotValResults(self, save_path=None, label=None): if label: accs = self.training_val_results_per_task['acc'][label] aucs = self.training_val_results_per_task['auc'][label] else: accs = self.training_val_results['acc'] aucs = self.training_val_results['auc'] plt.figure() plt.plot([i * self.accuracy_logged_every_n for i in range(len(accs))], accs) plt.plot([i * self.accuracy_logged_every_n for i in range(len(aucs))], aucs) plt.xlabel('Training step') plt.ylabel('Validation accuracy') plt.legend(['Accuracy','AUC']) if save_path is None: plt.show() else: plt.savefig(save_path)
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings" plt.figure(figsize=(18, 18)) # in inches x = low_dim_embs[:, 0] y = low_dim_embs[:, 1] plt.scatter(x, y) for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.show() # plt.savefig(filename)
def _plot_cmc(cmcs, colors, labels, title, fontsize=10, position=None): if position is None: position = 'lower right' # open new page for current plot figure = pyplot.figure() max_R = 0 # plot the CMC curves for i in range(len(cmcs)): probs = bob.measure.cmc(cmcs[i]) R = len(probs) pyplot.semilogx(range(1, R+1), probs, figure=figure, color=colors[i], label=labels[i]) max_R = max(R, max_R) # change axes accordingly ticks = [int(t) for t in pyplot.xticks()[0]] pyplot.xlabel('Rank') pyplot.ylabel('Probability') pyplot.xticks(ticks, [str(t) for t in ticks]) pyplot.axis([0, max_R, -0.01, 1.01]) pyplot.legend(loc=position, prop = {'size':fontsize}) pyplot.title(title) return figure
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=10, position=None): if position is None: position = 'upper center' # open new page for current plot figure = pyplot.figure() # plot the DET curves for i in range(len(scores_dev)): x,y = bob.measure.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100) pyplot.plot(x, y, color=colors[i], label=labels[i]) # change axes accordingly pyplot.xlabel('alpha') pyplot.ylabel('HTER') pyplot.title(title) pyplot.axis([-0.01, 1.01, -0.01, 0.51]) pyplot.grid(True) pyplot.legend(loc=position, prop = {'size':fontsize}) pyplot.title(title) return figure
def mfi(df): df['date'] = pd.to_datetime(df.date) fig = plt.figure(figsize=(16, 9)) gs = GridSpec(3, 1) # 2 rows, 3 columns fig.suptitle(df['date'][-1:].values[0]) fig.set_label('MFI') price = fig.add_subplot(gs[:2, 0]) price.plot(df['date'], df['close'], color='blue') indicator = fig.add_subplot(gs[2, 0], sharex=price) indicator.plot(df['date'], df['mfi'], c='pink') indicator.plot(df['date'], [20.]*len(df['date']), c='green') indicator.plot(df['date'], [80.]*len(df['date']), c='orange') price.grid(True) indicator.grid(True) plt.tight_layout() plt.show()
def atr(df): ''' Average True Range :param df: :return: ''' df['date'] = pd.to_datetime(df.date) fig = plt.figure(figsize=(16, 9)) gs = GridSpec(3, 1) # 2 rows, 3 columns fig.suptitle(df['date'][-1:].values[0]) fig.set_label('ATR') price = fig.add_subplot(gs[:2, 0]) price.plot(df['date'], df['close'], color='blue') indicator = fig.add_subplot(gs[2, 0], sharex=price) indicator.plot(df['date'], df['atr'], c='pink') # indicator.plot(df['date'], [20.]*len(df['date']), c='green') # indicator.plot(df['date'], [80.]*len(df['date']), c='orange') price.grid(True) indicator.grid(True) plt.tight_layout() plt.show()
def rocr(df): ''' Average True Range :param df: :return: ''' df['date'] = pd.to_datetime(df.date) fig = plt.figure(figsize=(16, 9)) gs = GridSpec(3, 1) # 2 rows, 3 columns fig.suptitle(df['date'][-1:].values[0]) fig.set_label('ATR') price = fig.add_subplot(gs[:2, 0]) price.plot(df['date'], df['close'], color='blue') indicator = fig.add_subplot(gs[2, 0], sharex=price) indicator.plot(df['date'], df['rocr'], c='pink') # indicator.plot(df['date'], [20.]*len(df['date']), c='green') # indicator.plot(df['date'], [80.]*len(df['date']), c='orange') price.grid(True) indicator.grid(True) plt.tight_layout() plt.show()
def __init__(self,to_plot = True): self.state = np.array([0,0]) self.observation_shape = np.shape(self.get_state())[0] if to_plot: plt.ion() fig = plt.figure() ax1 = fig.add_subplot(111,aspect='equal') #ax1.axis('off') plt.xlim([-0.5,5.5]) plt.ylim([-0.5,5.5]) self.g1 = ax1.add_artist(plt.Circle((self.state[0],self.state[1]),0.1,color='red')) self.fig = fig self.ax1 = ax1 self.fig.canvas.draw() self.fig.canvas.flush_events()
def plot_similardishes(idx,xlim): match = yum_ingr2.iloc[yum_cos[idx].argsort()[-21:-1]][::-1] newidx = match.index.get_values() match['cosine'] = yum_cos[idx][newidx] match['rank'] = range(1,1+len(newidx)) label1, label2 =[],[] for i in match.index: label1.append(match.ix[i,'cuisine']) label2.append(match.ix[i,'recipeName']) fig = plt.figure(figsize=(10,10)) ax = sns.stripplot(y='rank', x='cosine', data=match, jitter=0.05, hue='cuisine',size=15,orient="h") ax.set_title(yum_ingr2.ix[idx,'recipeName']+'('+yum_ingr2.ix[idx,'cuisine']+')',fontsize=18) ax.set_xlabel('Flavor cosine similarity',fontsize=18) ax.set_ylabel('Rank',fontsize=18) ax.yaxis.grid(color='white') ax.xaxis.grid(color='white') for label, y,x, in zip(label2, match['rank'],match['cosine']): ax.text(x+0.001,y-1,label, ha = 'left') ax.legend(loc = 'lower right',prop={'size':14}) ax.set_ylim([20,-1]) ax.set_xlim(xlim)
def tsne_cluster_cuisine(df,sublist): lenlist=[0] df_sub = df[df['cuisine']==sublist[0]] lenlist.append(df_sub.shape[0]) for cuisine in sublist[1:]: temp = df[df['cuisine']==cuisine] df_sub = pd.concat([df_sub, temp],axis=0,ignore_index=True) lenlist.append(df_sub.shape[0]) df_X = df_sub.drop(['cuisine','recipeName'],axis=1) print df_X.shape, lenlist dist = squareform(pdist(df_X, metric='cosine')) tsne = TSNE(metric='precomputed').fit_transform(dist) palette = sns.color_palette("hls", len(sublist)) plt.figure(figsize=(10,10)) for i,cuisine in enumerate(sublist): plt.scatter(tsne[lenlist[i]:lenlist[i+1],0],\ tsne[lenlist[i]:lenlist[i+1],1],c=palette[i],label=sublist[i]) plt.legend() #interactive plot with boken; set up for four categories, with color palette; pass in df for either ingredient or flavor
def Energy_Flow(Time_Series): Energy_Flow = {'Energy_Demand':0, 'Lost Load':0, 'Energy PV':0,'Curtailment':0, 'Energy Diesel':0, 'Discharge energy from the Battery':0, 'Charge energy to the Battery':0} for v in Energy_Flow.keys(): if v == 'Energy PV': Energy_Flow[v] = round((Time_Series[v].sum() - Time_Series['Curtailment'].sum()- Time_Series['Charge energy to the Battery'].sum())/1000000, 2) else: Energy_Flow[v] = round((Time_Series[v].sum())/1000000, 2) c = ['From Generator', 'To Battery', 'Demand', 'From PV', 'From Battery', 'Curtailment', 'Lost Load'] plt.figure() plt.bar((1,2,3,4,5,6,7), Energy_Flow.values(), color= 'b', alpha=0.3, align='center') plt.xticks((1.2,2.2,3.2,4.2,5.2,6.2,7.2), c) plt.xlabel('Technology') plt.ylabel('Energy Flow (MWh)') plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='on') plt.xticks(rotation=-30) plt.savefig('Results/Energy_Flow.png', bbox_inches='tight') plt.show() return Energy_Flow
def LDR(Time_Series): columns=['Consume diesel', 'Lost Load', 'Energy PV','Curtailment','Energy Diesel', 'Discharge energy from the Battery', 'Charge energy to the Battery', 'Energy_Demand', 'State_Of_Charge_Battery' ] Sort_Values = Time_Series.sort('Energy_Demand', ascending=False) index_values = [] for i in range(len(Time_Series)): index_values.append((i+1)/float(len(Time_Series))*100) Sort_Values = pd.DataFrame(Sort_Values.values/1000, columns=columns, index=index_values) plt.figure() ax = Sort_Values['Energy_Demand'].plot(style='k-',linewidth=1) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) ax.xaxis.set_major_formatter(xticks) ax.set_ylabel('Load (kWh)') ax.set_xlabel('Percentage (%)') plt.savefig('Results/LDR.png', bbox_inches='tight') plt.show()
def draw_results(self): metrics_log, cost_log = {}, {} for key, value in sorted(self._logs.items()): metrics_log[key], cost_log[key] = value[:-1], value[-1] for i, name in enumerate(sorted(self._metric_names)): plt.figure() plt.title("Metric Type: {}".format(name)) for key, log in sorted(metrics_log.items()): xs = np.arange(len(log[i])) + 1 plt.plot(xs, log[i], label="Data Type: {}".format(key)) plt.legend(loc=4) plt.show() plt.close() plt.figure() plt.title("Cost") for key, loss in sorted(cost_log.items()): xs = np.arange(len(loss)) + 1 plt.plot(xs, loss, label="Data Type: {}".format(key)) plt.legend() plt.show()
def get_graphs_from_logs(): with open("Results/logs.dat", "rb") as file: logs = pickle.load(file) for (hus, ep, bt), log in logs.items(): hus = list(map(lambda _c: str(_c), hus)) title = "hus: {} ep: {} bt: {}".format( "- " + " -> ".join(hus) + " -", ep, bt ) fb_log, acc_log = log["fb_log"], log["acc_log"] xs = np.arange(len(fb_log)) + 1 plt.figure() plt.title(title) plt.plot(xs, fb_log) plt.plot(xs, acc_log, c="g") plt.savefig("Results/img/" + "{}_{}_{}".format( "-".join(hus), ep, bt )) plt.close()
def plot_all_metrics(self): """ :return: """ plt.figure() self.plot_one_metric(self.bleu_1, 'BLEU Score - 1-Gram') plt.figure() self.plot_one_metric(self.bleu_2, 'BLEU Score - 2-Gram') plt.figure() self.plot_one_metric(self.bleu_3, 'BLEU Score - 3-Gram') plt.figure() self.plot_one_metric(self.bleu_4, 'BLEU Score - 4-Gram') plt.figure() self.plot_one_metric(self.rouge, 'ROUGE Score')
def display_terrain(self): """Display 3D surface of terrain.""" fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(self.x_grid, self.y_grid, self.z_grid) ax.set_zlim(0.0, 1.0) plt.show()
def heatmap(src_sent, tgt_sent, att_weights, idx): plt.figure(figsize=(8, 6), dpi=80) att_probs = np.stack(att_weights, axis=1) plt.imshow(att_weights, cmap='gray', interpolation='nearest') #src_sent = [ str(s) for s in src_sent] #tgt_sent = [ str(s) for s in tgt_sent] #plt.xticks(range(0, len(tgt_sent)), tgt_sent, rotation='vertical') #plt.yticks(range(0, len(src_sent)), src_sent) plt.xticks(range(0, len(tgt_sent)),"") plt.yticks(range(0, len(src_sent)),"") plt.axis('off') plt.savefig("att_matrix_"+str(idx), bbox_inches='tight') plt.close()
def show_pca(X, sentences): plt.figure() plt.plot(X[:,0], X[:,1], 'x') for x, sentence in zip(X, sentences): plt.text(x[0]-0.01, x[1]-0.01, sentence, horizontalalignment='center', verticalalignment='top') plt.show()
def show_pca(X, sentences): plt.figure() plt.plot(X[:,0], X[:,1], 'x') for x, sentence in zip(X, sentences): plt.text(x[0]+0.01, x[1]-0.01, sentence, horizontalalignment='left', verticalalignment='top') plt.show()
def show_pca(X, programs): plt.figure() plt.plot(X[:,0], X[:,1], 'x') for x, program in zip(X, programs): plt.text(x[0]-0.01, x[1]-0.01, program, horizontalalignment='center', verticalalignment='top') plt.show()
def show_setup(self, halt=True): """Open a plot window that shows the simulation setup including boundaries, outputs and material regions. Args: halt: Halt script execution until plot window is closed. """ pp.figure() self.axes = pp.gca() self.axes.set_xlim(0, max(self.field.x.vector) / self._x_axis_factor) self.axes.set_ylim(-self.scale, self.scale) self.axes.set_xlabel('{0} / {1}m'.format(self.x_label, self._x_axis_prefix)) self.axes.set_ylabel(self.y_label) pp.grid(True) if self.show_materials: for mat_region in self.field.material_regions: self.plot_region(mat_region.region) if self.show_boundaries: for name, component in self.field_components.items(): for boundary in component.boundaries: self.plot_region(boundary.region) if self.show_output: for name, component in self.field_components.items(): for output in component.outputs: self.plot_region(output.region) if halt: pp.show()
def show_setup(self, halt=True): """Open a plot window that shows the simulation setup including boundaries, outputs and material regions. Args: halt: Halt script execution until plot window is closed. """ pp.figure() self.axes = pp.gca() pp.axis('equal') self.axes.set_xlim(0, max(self.field.x.vector) / self._x_axis_factor) self.axes.set_ylim(0, max(self.field.y.vector) / self._y_axis_factor) self.axes.set_xlabel('{0} / {1}m'.format(self.x_label, self._x_axis_prefix)) self.axes.set_ylabel('{0} / {1}m'.format(self.y_label, self._y_axis_prefix)) if self.show_materials: for mat_region in self.field.material_regions: self.plot_region(mat_region.region) if self.show_boundaries: for name, component in self.field_components.items(): for boundary in component.boundaries: self.plot_region(boundary.region) if self.show_output: for name, component in self.field_components.items(): for output in component.outputs: self.plot_region(output.region) if halt: pp.show()