Python matplotlib.pyplot 模块,savefig() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.savefig()

项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def plot_sent_trajectories(sents, decode_plot):

    font = {'family' : 'normal',
            'size'   : 14}

    matplotlib.rc('font', **font) 
    i = 0    
    l = ["Portuguese","Catalan"]

    axes = plt.gca()
    #axes.set_xlim([xmin,xmax])
    axes.set_ylim([-1,1])

    for sent, enc in zip(sents, decode_plot):
    if i==2: continue
        i += 1
        #times = np.arange(len(enc))
        times = np.linspace(0,1,len(enc))
        plt.plot(times, enc, label=l[i-1])
    plt.title("Hidden Node Trajectories")
    plt.xlabel('timestep')
    plt.ylabel('trajectories')
    plt.legend(loc='best')
    plt.savefig("final_tests/cr_por_cat_hidden_cell_trajectories", bbox_inches="tight")
    plt.close()
项目:visual-search    作者:GYXie    | 项目源码 | 文件源码
def main():
    args.input_data_dir = os.path.abspath(args.input_data_dir)
    if not os.path.exists(args.output_data_dir):
        os.mkdir(args.output_data_dir)
    for dir_path, dir_names, file_names in os.walk(args.input_data_dir):
        if len(file_names) > 0:
            print(dir_path)
            rows = int(math.ceil(len(file_names) / 6.0))
            print(rows)
            fig, axes = plt.subplots(4, 12, subplot_kw={'xticks': [], 'yticks': []})
            fig.subplots_adjust(hspace=0.01, wspace=0.01)
            for ax, file_name in zip(axes.flat, file_names):
                print(file_name)
                img = imread(dir_path + '/' + file_name)
                ax.imshow(img)
                # ax.set_title(os.path.splitext(file_name)[0].replace('.227x227', ''))
            plt.savefig(args.output_data_dir + dir_path.replace(args.input_data_dir, '') + '.pdf')
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def saveHintonPlot(self, matrix, num_tests, max_weight=None, ax=None):
        """Draw Hinton diagram for visualizing a weight matrix."""
        fig,ax = plt.subplots(1,1)

        if not max_weight:
            max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))

        ax.patch.set_facecolor('gray')
        ax.set_aspect('equal', 'box')
        ax.xaxis.set_major_locator(plt.NullLocator())
        ax.yaxis.set_major_locator(plt.NullLocator())

        for (x, y), w in np.ndenumerate(matrix):
            color = 'white' if w > 0 else 'black'
            size = np.sqrt(np.abs(0.5*w/num_tests)) # Need to scale so that it is between 0 and 0.5
            rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                                 facecolor=color, edgecolor=color)
            ax.add_patch(rect)

        ax.autoscale_view()
        ax.invert_yaxis()
        plt.savefig(self.figures_path + self.save_prefix + '-Hinton.eps')
        plt.close()
项目:pyballd    作者:Yurlungur    | 项目源码 | 文件源码
def plot_interpolation(orderx,ordery):
    s = PseudoSpectralDiscretization2D(orderx,XMIN,XMAX,
                                ordery,YMIN,YMAX)
    Xc,Yc = s.get_x2d()
    x = np.linspace(XMIN,XMAX,100)
    y = np.linspace(YMIN,YMAX,100)
    Xf,Yf = np.meshgrid(x,y,indexing='ij')
    f_coarse = f(Xc,Yc)
    f_interpolator = s.to_continuum(f_coarse)
    f_num = f_interpolator(Xf,Yf)
    plt.pcolor(Xf,Yf,f_num)
    cb = plt.colorbar()
    cb.set_label('interpolated function',fontsize=16)
    plt.xlabel('x')
    plt.ylabel('y')
    for postfix in ['.png','.pdf']:
        name = 'orthopoly_interpolated_function'+postfix
        if USE_FIGS_DIR:
            name = 'figs/' + name
        plt.savefig(name,
                    bbox_inches='tight')
    plt.clf()
项目:nanoQC    作者:wdecoster    | 项目源码 | 文件源码
def per_base_sequence_content_and_quality(fqbin, qualbin, outdir, figformat):
    fig, axs = plt.subplots(2, 2, sharex='col', sharey='row')
    lines = plot_nucleotide_diversity(axs[0, 0], fqbin)
    plot_nucleotide_diversity(axs[0, 1], fqbin, invert=True)
    l_Q = plot_qual(axs[1, 0], qualbin)
    plot_qual(axs[1, 1], qualbin, invert=True)
    plt.setp([a.get_xticklabels() for a in axs[0, :]], visible=False)
    plt.setp([a.get_yticklabels() for a in axs[:, 1]], visible=False)
    for ax in axs[:, 1]:
        ax.set_ylabel('', visible=False)
    for ax in axs[0, :]:
        ax.set_xlabel('', visible=False)
    # Since axes are shared I should only invert once. Twice will restore the original axis order!
    axs[0, 1].invert_xaxis()
    plt.suptitle("Per base sequence content and quality")
    axl = fig.add_axes([0.4, 0.4, 0.2, 0.2])
    ax.plot()
    axl.axis('off')
    lines.append(l_Q)
    plt.legend(lines, ['A', 'T', 'G', 'C', 'Quality'], loc="center", ncol=5)
    plt.savefig(os.path.join(outdir, "PerBaseSequenceContentQuality." +
                             figformat), format=figformat, dpi=500)
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None):
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    for n in xrange(0, trigger_snippets.shape[2]):
        y = trigger_snippets[:, elec_index, n]
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        b = 0.5 + 0.5 * numpy.random.rand()
        ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
    ax.grid(True)
    ax.set_xlim([numpy.amin(x), numpy.amax(x)])
    ax.set_xlabel("time")
    ax.set_ylabel("amplitude")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_loss_curve(losss, title=None, save=None):
    '''Plot loss curve'''
    x_min = 1
    x_max = len(losss) - 1
    fig = pylab.figure()
    ax = fig.gca()
    ax.semilogy(range(x_min, x_max + 1), losss[1:], color='blue', linestyle='solid')
    ax.grid(True, which='both')
    if title is None:
        ax.set_title("Loss curve")
    else:
        ax.set_title(title)
    ax.set_xlabel("iteration")
    ax.set_ylabel("loss")
    ax.set_xlim([x_min - 1, x_max + 1])
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:seq2seq    作者:google    | 项目源码 | 文件源码
def after_run(self, _run_context, run_values):
    fetches_batch = run_values.results
    for fetches in unbatch_dict(fetches_batch):
      # Convert to unicode
      fetches["predicted_tokens"] = np.char.decode(
          fetches["predicted_tokens"].astype("S"), "utf-8")
      fetches["features.source_tokens"] = np.char.decode(
          fetches["features.source_tokens"].astype("S"), "utf-8")

      if self.params["dump_plots"]:
        output_path = os.path.join(self.params["output_dir"],
                                   "{:05d}.png".format(self._idx))
        _create_figure(fetches)
        plt.savefig(output_path)
        plt.close()
        tf.logging.info("Wrote %s", output_path)
        self._idx += 1
      self._attention_scores_accum.append(_get_scores(fetches))
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def make_python_fig(self, code: str,
                        exts: Tuple[str, ...]=('pdf', 'svg'),
                        tight_layout=True) -> str:
        hashsum = hashlib.md5(code.encode('utf8')).hexdigest()
        prefix = hashsum[:2]
        path = os.path.join(self.figures_dir, prefix, hashsum)
        needfigure = False
        for ext in exts:
            if not os.path.isfile(os.path.join(
                    path, self.default_figname + "." + ext)):
                needfigure = True
                break

        if needfigure:
            make_sure_path_exists(path)
            gl = self.pythonfigure_globals
            plt.close()
            exec(code, gl)
            if tight_layout:
                plt.tight_layout()
            for ext in exts:
                plt.savefig(os.path.join(
                    path, self.default_figname + "." + ext))
        return os.path.join(prefix, hashsum)
项目:voxcelchain    作者:hiroaki-kaneda    | 项目源码 | 文件源码
def conv1(model):
    n1, n2, x, y, z = model.conv1.W.shape
    fig = plt.figure()
    for nn in range(0, n1):
        ax = fig.add_subplot(4, 5, nn+1, projection='3d')
        ax.set_xlim(0.0, x)
        ax.set_ylim(0.0, y)
        ax.set_zlim(0.0, z)
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_zticklabels([])
        for xx in range(0, x):
            for yy in range(0, y):
                for zz in range(0, z):
                    max = np.max(model.conv1.W.data[nn, :])
                    min = np.min(model.conv1.W.data[nn, :])
                    step = (max - min) / 1.0
                    C = (model.conv1.W.data[nn, 0, xx, yy, zz] - min) / step
                    color = cm.cool(C)
                    C = abs(1.0 - C)
                    ax.plot(np.array([xx]), np.array([yy]), np.array([zz]), "o", color=color, ms=7.0*C, mew=0.1)

    plt.savefig("result/graph_conv1.png")
项目:voxcelchain    作者:hiroaki-kaneda    | 项目源码 | 文件源码
def create_graph():
    logfile = 'result/log'
    xs = []
    ys = []
    ls = []
    f = open(logfile, 'r')
    data = json.load(f)

    print(data)

    for d in data:
        xs.append(d["iteration"])
        ys.append(d["main/accuracy"])
        ls.append(d["main/loss"])

    plt.clf()
    plt.cla()
    plt.hlines(1, 0, np.max(xs), colors='r', linestyles="dashed")  # y=-1, 1??????
    plt.title(r"loss/accuracy")
    plt.plot(xs, ys, label="accuracy")
    plt.plot(xs, ls, label="loss")
    plt.legend()
    plt.savefig("result/log.png")
项目:bnn-analysis    作者:myshkov    | 项目源码 | 文件源码
def save_fig(file_name, clear=True):
    if not os.path.exists(FIGURES_DIR):
        os.makedirs(FIGURES_DIR)

    if file_name is not None:
        plt.savefig(FIGURES_DIR + '/' + file_name + '.png')

        # save for report
        # if "--timestamp" in file_name:
        #     dir = FIGURES_DIR + "/final"
        #     if not os.path.exists(dir):
        #         os.makedirs(dir)
        #
        #     file_name = file_name[:file_name.find("--timestamp")]
        #     plt.savefig(dir + '/' + file_name + '.png', dpi=DPI)

    if clear:
        plt.clf()
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def main():
    parser = generate_parser()
    args = parser.parse_args()
    infile1 = h5py.File(args.input1, 'r')
    infile2 = h5py.File(args.input2, 'r')
    resolutions = numpy.intersect1d(infile1['resolutions'][...], infile2['resolutions'][...])
    chroms = numpy.intersect1d(infile2['chromosomes'][...], infile2['chromosomes'][...])
    results = {}
    data1 = load_data(infile1, chroms, resolutions)
    data2 = load_data(infile2, chroms, resolutions)
    infile1.close()
    infile2.close()
    results = {}
    results[(args.input1.split('/')[-1].strip('.quasar'), args.input2.split('/')[-1].strip('.quasar'))] = correlate_samples(data1, data2)
    for resolution in data1.keys():
        for chromo in chroms:
            plt.scatter(data1[resolution][chromo][1].flatten(),data2[resolution][chromo][1].flatten(),alpha=0.1,color='red')
            plt.show()
            plt.savefig(args.output+'.res'+str(resolution)+'.chr'+chromo+'.pdf')
项目:sampleRNN_ICLR2017    作者:soroushmehr    | 项目源码 | 文件源码
def plot_traing_info(x, ylist, path):
    """
    Loads log file and plot x and y values as provided by input.
    Saves as <path>/train_log.png
    """
    file_name = os.path.join(path, __train_log_file_name)
    try:
        with open(file_name, "rb") as f:
            log = pickle.load(f)
    except IOError:  # first time
        warnings.warn("There is no {} file here!!!".format(file_name))
        return
    plt.figure()
    x_vals = log[x]
    for y in ylist:
        y_vals = log[y]
        if len(y_vals) != len(x_vals):
            warning.warn("One of y's: {} does not have the same length as x:{}".format(y, x))
        plt.plot(x_vals, y_vals, label=y)
        # assert len(y_vals) == len(x_vals), "not the same len"
    plt.xlabel(x)
    plt.legend()
    #plt.show()
    plt.savefig(file_name[:-3]+'png', bbox_inches='tight')
    plt.close('all')
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def plot_spectra(results):
    plt.figure(figsize=(10, 4))
    plt.imshow(
        np.concatenate(
            [np.flipud(results['x'].T),
             np.flipud(results['xh'].T),
             np.flipud(results['x_conv'].T)],
            0),
        aspect='auto',
        cmap='jet',
    )
    plt.colorbar()
    plt.title('Upper: Real input; Mid: Reconstrution; Lower: Conversion to target.')
    plt.savefig(
        os.path.join(
            args.logdir,
            '{}.png'.format(
                os.path.split(str(results['f'], 'utf-8'))[-1]
            )
        )
    )
项目:didi_competition    作者:Heipiao    | 项目源码 | 文件源码
def plot_single_day_traffic(df):
    y_tj_l1 = df["tj_level1_count"]
    y_tj_l2 = df["tj_level2_count"]
    y_tj_l3 = df["tj_level3_count"]
    y_tj_l4 = df["tj_level4_count"]

    x_time = df["time"]
    x_district = df["district"]

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(x_time, x_district, y_tj_l1, )
    #ax.plot_surface(x_time, x_district, y_tj_l1)
    print(plt.get_backend())
    plt.show()
    plt.savefig("plot_traffic.png")
项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)):
    noise = np.random.normal(0,1,size=(example,randomDim))
    generatedImage = generator.predict(noise)
    generatedImage = generatedImage.reshape(example,28,28)

    plt.figure(figsize=figsize)

    for i in range(example):
        plt.subplot(dim[0],dim[1],i+1)
        plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray')
        '''drop the x and y axis'''
        plt.axis('off')
    plt.tight_layout()

    if not os.path.exists('generated_image'):
        os.mkdir('generated_image')
    plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
项目:nelder_mead    作者:owruby    | 项目源码 | 文件源码
def plot2d_simplex(simplex, ind):
    fig_dir = "./"
    plt.cla()
    n = 1000
    x1 = np.linspace(-256, 1024, n)
    x2 = np.linspace(-256, 1024, n)
    X, Y = np.meshgrid(x1, x2)
    Z = np.sqrt(X ** 2 + Y ** 2)
    plt.contour(X, Y, Z, levels=list(np.arange(0, 1200, 10)))
    plt.gca().set_aspect("equal")
    plt.xlim((-256, 768))
    plt.ylim((-256, 768))

    plt.plot([simplex[0].x[0], simplex[1].x[0]],
             [simplex[0].x[1], simplex[1].x[1]], color="#000000")
    plt.plot([simplex[1].x[0], simplex[2].x[0]],
             [simplex[1].x[1], simplex[2].x[1]], color="#000000")
    plt.plot([simplex[2].x[0], simplex[0].x[0]],
             [simplex[2].x[1], simplex[0].x[1]], color="#000000")
    plt.savefig(os.path.join(fig_dir, "{:03d}.png".format(ind)))
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def on_train_end(self, logs={}):
        self.model.set_weights(self.best_weights)
        try: self.model.save('copy.model')
        except Exception: print('could not save model')
        if self.verbose > 0: print(' {:.1f} min'.format((time.time()-self.start)/60), flush=True)
        if self.plot:
            filename ='{}_{}_{}.png'.format(self.counter, self.name, self.model.name)
            filename = ''.join([x if x not in ',;\\/:><|?*\"' else '_' for x in filename])
            try: plt.savefig(os.path.join('.','plots', filename ))
            except Exception as e:print('can\'t save plots: {}'.format(e))
#        try:
#            self.model.save(os.path.join('.','weights', str(self.counter) + self.model.name))
#        except Exception as error:
#            print("Got an error while saving model: {}".format(error))
#        return




#%%
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def plotValResults(self, save_path=None, label=None):
        if label is not None:
            accs = self.training_val_results['acc'][label]
            aucs = self.training_val_results['auc'][label]
        else:
            accs = self.training_val_results['acc']
            aucs = self.training_val_results['auc']
        plt.figure()
        plt.plot([i * ACCURACY_LOGGED_EVERY_N_STEPS for i in range(len(accs))], accs)
        plt.plot([i * ACCURACY_LOGGED_EVERY_N_STEPS for i in range(len(aucs))], aucs)
        plt.xlabel('Training step')
        plt.ylabel('Validation accuracy')
        plt.legend(['Accuracy','AUC'])
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
        plt.close()
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def plotValResults(self, save_path=None, label=None):
        if label:
            accs = self.training_val_results_per_task['acc'][label]
            aucs = self.training_val_results_per_task['auc'][label]
        else:
            accs = self.training_val_results['acc']
            aucs = self.training_val_results['auc']
        plt.figure()
        plt.plot([i * self.accuracy_logged_every_n for i in range(len(accs))], accs)
        plt.plot([i * self.accuracy_logged_every_n for i in range(len(aucs))], aucs)
        plt.xlabel('Training step')
        plt.ylabel('Validation accuracy')
        plt.legend(['Accuracy','AUC'])
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
项目:photinia    作者:XoriieInpottn    | 项目源码 | 文件源码
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
    assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
    plt.figure(figsize=(18, 18))  # in inches
    x = low_dim_embs[:, 0]
    y = low_dim_embs[:, 1]
    plt.scatter(x, y)
    for i, label in enumerate(labels):
        x, y = low_dim_embs[i, :]
        plt.annotate(label,
                     xy=(x, y),
                     xytext=(5, 2),
                     textcoords='offset points',
                     ha='right',
                     va='bottom')
    plt.show()
    # plt.savefig(filename)
项目:GANGogh    作者:rkjones4    | 项目源码 | 文件源码
def flush():
    prints = []

    for name, vals in _since_last_flush.items():
        prints.append("{}\t{}".format(name, np.mean(list(vals.values()))))
        _since_beginning[name].update(vals)

        x_vals = np.sort(list(_since_beginning[name].keys()))
        y_vals = [_since_beginning[name][x] for x in x_vals]

        plt.clf()
        plt.plot(x_vals, y_vals)
        plt.xlabel('iteration')
        plt.ylabel(name)
        plt.savefig('generated/'+name.replace(' ', '_')+'.jpg')

    print("iter {}\t{}".format(_iter[0], "\t".join(prints)))
    _since_last_flush.clear()

    with open('log.pkl', 'wb') as f:
        pickle.dump(dict(_since_beginning), f, 4)
项目:chainer-visualization    作者:hvy    | 项目源码 | 文件源码
def save_ims(filename, ims, dpi=100, scale=0.5):
    n, c, h, w = ims.shape

    rows = int(math.ceil(math.sqrt(n)))
    cols = int(round(math.sqrt(n)))

    fig, axes = plt.subplots(rows, cols, figsize=(w*cols/dpi*scale, h*rows/dpi*scale), dpi=dpi)

    for i, ax in enumerate(axes.flat):
        if i < n:
            ax.imshow(ims[i].transpose((1, 2, 0)))
        ax.set_xticks([])
        ax.set_yticks([])
        ax.axis('off')

    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0.1, hspace=0.1)
    plt.savefig(filename, dpi=dpi, bbox_inces='tight', transparent=True)
    plt.clf()
    plt.close()
项目:MicroGrids    作者:squoilin    | 项目源码 | 文件源码
def Energy_Flow(Time_Series):


    Energy_Flow = {'Energy_Demand':0, 'Lost Load':0, 'Energy PV':0,'Curtailment':0, 'Energy Diesel':0, 'Discharge energy from the Battery':0, 'Charge energy to the Battery':0}

    for v in Energy_Flow.keys():
        if v == 'Energy PV':
            Energy_Flow[v] = round((Time_Series[v].sum() - Time_Series['Curtailment'].sum()- Time_Series['Charge energy to the Battery'].sum())/1000000, 2)
        else:
            Energy_Flow[v] = round((Time_Series[v].sum())/1000000, 2)


    c = ['From Generator', 'To Battery', 'Demand', 'From PV', 'From Battery', 'Curtailment', 'Lost Load']       
    plt.figure()    
    plt.bar((1,2,3,4,5,6,7), Energy_Flow.values(), color= 'b', alpha=0.3, align='center')

    plt.xticks((1.2,2.2,3.2,4.2,5.2,6.2,7.2), c)
    plt.xlabel('Technology')
    plt.ylabel('Energy Flow (MWh)')
    plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='on')
    plt.xticks(rotation=-30)
    plt.savefig('Results/Energy_Flow.png', bbox_inches='tight')
    plt.show()    

    return Energy_Flow
项目:MicroGrids    作者:squoilin    | 项目源码 | 文件源码
def LDR(Time_Series):

    columns=['Consume diesel', 'Lost Load', 'Energy PV','Curtailment','Energy Diesel', 
             'Discharge energy from the Battery', 'Charge energy to the Battery', 
             'Energy_Demand',  'State_Of_Charge_Battery'  ]
    Sort_Values = Time_Series.sort('Energy_Demand', ascending=False)

    index_values = []

    for i in range(len(Time_Series)):
        index_values.append((i+1)/float(len(Time_Series))*100)

    Sort_Values = pd.DataFrame(Sort_Values.values/1000, columns=columns, index=index_values)

    plt.figure() 
    ax = Sort_Values['Energy_Demand'].plot(style='k-',linewidth=1)

    fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
    xticks = mtick.FormatStrFormatter(fmt)
    ax.xaxis.set_major_formatter(xticks)
    ax.set_ylabel('Load (kWh)')
    ax.set_xlabel('Percentage (%)')

    plt.savefig('Results/LDR.png', bbox_inches='tight')
    plt.show()
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def word_cloud(word_embedding_matrix, vocab, s, save_file='scatter.png'):
    words = [(i, vocab[i]) for i in s]
    model = TSNE(n_components=2, random_state=0)
    #Note that the following line might use a good chunk of RAM
    tsne_embedding = model.fit_transform(word_embedding_matrix)
    words_vectors = tsne_embedding[np.array([item[1] for item in words])]

    plt.subplots_adjust(bottom = 0.1)
    plt.scatter(
        words_vectors[:, 0], words_vectors[:, 1], marker='o', cmap=plt.get_cmap('Spectral'))

    for label, x, y in zip(s, words_vectors[:, 0], words_vectors[:, 1]):
        plt.annotate(
            label,
            xy=(x, y), xytext=(-20, 20),
            textcoords='offset points', ha='right', va='bottom',
            fontsize=20,
            # bbox=dict(boxstyle='round,pad=1.', fc='yellow', alpha=0.5),
            arrowprops=dict(arrowstyle = '<-', connectionstyle='arc3,rad=0')
            )
    plt.show()
    # plt.savefig(save_file)
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def plot_info_retrieval(precisions, save_file):
    # markers = ["|", "D", "8", "v", "^", ">", "h", "H", "s", "*", "p", "d", "<"]
    markers = ["D", "p", 's', "*", "d", "8", "^", "H", "v", ">", "<", "h", "|"]
    ticks = zip(*zip(*precisions)[1][0])[0]
    plt.xticks(range(len(ticks)), ticks)
    new_x = interpolate.interp1d(ticks, range(len(ticks)))(ticks)

    i = 0
    for model_name, val in precisions:
        fr, pr = zip(*val)
        plt.plot(new_x, pr, linestyle='-', alpha=0.7, marker=markers[i],
                        markersize=8, label=model_name)
        i += 1
        # plt.legend(model_name)
    plt.xlabel('Fraction of Retrieved Documents')
    plt.ylabel('Precision')
    legend = plt.legend(loc='upper right', shadow=True)
    plt.savefig(save_file)
    plt.show()
项目:MLPractices    作者:carefree0910    | 项目源码 | 文件源码
def get_graphs_from_logs():
        with open("Results/logs.dat", "rb") as file:
            logs = pickle.load(file)
        for (hus, ep, bt), log in logs.items():
            hus = list(map(lambda _c: str(_c), hus))
            title = "hus: {} ep: {} bt: {}".format(
                "- " + " -> ".join(hus) + " -", ep, bt
            )
            fb_log, acc_log = log["fb_log"], log["acc_log"]
            xs = np.arange(len(fb_log)) + 1
            plt.figure()
            plt.title(title)
            plt.plot(xs, fb_log)
            plt.plot(xs, acc_log, c="g")
            plt.savefig("Results/img/" + "{}_{}_{}".format(
                "-".join(hus), ep, bt
            ))
            plt.close()
项目:ProductAnalysis    作者:Jasonhy    | 项目源码 | 文件源码
def make_comment_plot(data,p_id):
    """
    ????????
    :param datas:
    :return:
    """
    if data:
        temps = "".join(data).replace(" ", "").replace("\r\n", "")
        values = re.findall(r'(\d+)', temps)
        c_values = [int(value) for value in values]
        c_keys = re.findall('[\u4e00-\u9fa5]+', temps)
        print(c_keys)
        s = pd.Series(c_values, index=c_keys,name='???')
        s = s[3:6]
        s_sum = s.sum()
        s = s.apply(lambda x: x / s_sum)
        s.plot.pie(autopct='%0.2f%%', fontsize=8, colors=['g', 'y', 'r'])
        plt.savefig("static/upload/%s_c.png" % p_id,dpi=90)
        plt.close()

        return file_hepler.get_image_path("%s_c.png" % p_id)
    else:
        return file_hepler.get_image_path("no_good_comments.png")
项目:ProductAnalysis    作者:Jasonhy    | 项目源码 | 文件源码
def make_overview_plot(data,p_id):
    """
    ????
    :param datas:
    :return:
    """
    if data:
        temps = "".join(data)
        values = re.findall(r'(\d+)', temps)
        c_values = [int(value) for value in values]
        c_keys = re.findall('[\u4e00-\u9fa5]+', temps)
        s = pd.Series(c_values, index=c_keys)
        s.plot.bar(figsize=(6, 8), fontsize=8)

        plt.savefig("static/upload/%s_o.png" % p_id,dpi=90)
        plt.close()
        return file_hepler.get_image_path("%s_o.png" % p_id)
    else:
        return file_hepler.get_image_path("no_overview.png")
项目:iFruitFly    作者:AdnanMuhib    | 项目源码 | 文件源码
def imagePloter(_feature_data, _im):
    fig = plt.figure();
    fig.add_subplot(1, 2, 1);
    print("Processing Please Wait...");
    im = misc.imread(_im);
    plt.imshow(im);
    n = 1;

    for cluster in _feature_data:
        points = cluster['points'];
        im = np.zeros((480, 640), dtype=int)
        im[points] = cluster['values']
        #plt.figure();
        #plt.imshow(im, cmap='gray')
        print("Writing Images...");
        fig.add_subplot(1, 2, 2);
        plt.imshow(im);
        prefix = re.split('IR_|.pgm', _im)[0];
        #print(prefix);
        postfix = re.split('IR_|.pgm', _im)[1]; 
        #print(postfix);
        plt.savefig(prefix + postfix + "_Cluster_" + str(n) + ".png");
        n = n + 1;
        print("Done..");
    return
项目:nn4nlp-code    作者:neubig    | 项目源码 | 文件源码
def plot_histogram(counter, label, plot=None):
    import matplotlib.pyplot as plt
    plt.figure()
    nums = list(counter.keys())
    counts = list(counter.values())
    indices = range(len(counts))
    bars = plt.bar(indices, counts, align="center")
    plt.xticks(indices, nums)
    top = 1.06 * max(counts)
    plt.ylim(min(counts), top)
    plt.xlabel("number of %s" % label)
    plt.ylabel("count")
    for bar in bars:
        count = bar.get_height()
        plt.text(bar.get_x() + bar.get_width() / 2., count, "%.1f%%" % (100.0 * count / sum(counts)),
                 ha="center", va="bottom")
    if plot:
        plt.savefig(plot + "histogram_" + label + ".png")
    else:
        plt.show()
项目:pauvre    作者:conchoecia    | 项目源码 | 文件源码
def print_images(base_output_name, image_formats, dpi, path=None, transparent=False):
    file_base = opath.splitext(opath.basename(base_output_name))[0]
    for fmt in image_formats:
        if path:
            out_name = path
        else:
            out_name = "{}.{}".format(file_base, fmt)
        try:
            if fmt == 'png':
                plt.savefig(out_name, dpi=dpi, transparent=transparent)
            else:
                plt.savefig(out_name, format=fmt, transparent=transparent)
        except PermissionError:
            # thanks to https://github.com/wdecoster for the suggestion
            print("""You don't have permission to save pauvre plots to this
            directory. Try changing the directory and running the script again!""")
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def save_fft(fil,audio_in):
    samples = len(audio_in)
    fft_size = 2**int(floor(log(samples)/log(2.0)))
    freq = fft(audio_in[0:fft_size])
    s_data = numpy.zeros(fft_size/2)
    x_data = numpy.zeros(fft_size/2)
    peak = 0;
    for j in xrange(fft_size/2):
        if (abs(freq[j]) > peak):
            peak = abs(freq[j])

    for j in xrange(fft_size/2):
        x_data[j] = log(2.0*(j+1.0)/fft_size);
        if (x_data[j] < -10):
            x_data[j] = -10
        s_data[j] = 10.0*log(abs(freq[j])/peak)/log(10.0)
    plt.ylim([-50,0])
    plt.plot(x_data,s_data)
    plt.title('fft log power')
    plt.grid()

    fields = fil.split('.')
    plt.savefig(fields[0]+'_fft.png', bbox_inches="tight")
    plt.clf()
    plt.close()
项目:django-tree    作者:BertrandBordage    | 项目源码 | 文件源码
def plot(self, df, database_name, test_name, y_label):
        means = df.rolling(70).mean()
        ax = means.plot(
            title=test_name, alpha=0.8,
            xlim=(0, means.index.max() * 1.05),
            ylim=(0, means.max().max() * 1.05),
        )
        ax.set(xlabel='Amount of objects in table', ylabel=y_label)

        ax.xaxis.set_major_formatter(
            FuncFormatter(lambda v, pos: prefix_unit(v, '', -3)))
        if y_label in self.ticks_formatters:
            ax.yaxis.set_major_formatter(self.ticks_formatters[y_label])

        legend = ax.legend(
            loc='upper center', bbox_to_anchor=(0.5, 0.0),
            bbox_transform=plt.gcf().transFigure,
            fancybox=True, shadow=True, ncol=3)

        plt.savefig(
            os.path.join(self.results_path,
                         '%s - %s.svg' % (database_name, test_name)),
            bbox_extra_artists=(legend,), bbox_inches='tight',
        )
项目:DeblurGAN    作者:KupynOrest    | 项目源码 | 文件源码
def __plot_canvas(self, show, save):
        if self.x is None:
            raise Exception("Please run fit() method first")
        else:
            plt.close()
            plt.plot(self.x.real, self.x.imag, '-', color='blue')

            plt.xlim((0, self.canvas))
            plt.ylim((0, self.canvas))
            if show and save:
                plt.savefig(self.path_to_save)
                plt.show()
            elif save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                plt.savefig(self.path_to_save)
            elif show:
                plt.show()
项目:DeblurGAN    作者:KupynOrest    | 项目源码 | 文件源码
def __plot_canvas(self, show, save):
        if len(self.PSFs) == 0:
            raise Exception("Please run fit() method first.")
        else:
            plt.close()
            fig, axes = plt.subplots(1, self.PSFnumber, figsize=(10, 10))
            for i in range(self.PSFnumber):
                axes[i].imshow(self.PSFs[i], cmap='gray')
            if show and save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                plt.savefig(self.path_to_save)
                plt.show()
            elif save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                plt.savefig(self.path_to_save)
            elif show:
                plt.show()
项目:acdc_segmenter    作者:baumgach    | 项目源码 | 文件源码
def boxplot_metrics(df, eval_dir):
    """
    Create summary boxplots of all geometric measures.

    :param df:
    :param eval_dir:
    :return:
    """

    boxplots_file = os.path.join(eval_dir, 'boxplots.eps')

    fig, axes = plt.subplots(3, 1)
    fig.set_figheight(14)
    fig.set_figwidth(7)

    sns.boxplot(x='struc', y='dice', hue='phase', data=df, palette="PRGn", ax=axes[0])
    sns.boxplot(x='struc', y='hd', hue='phase', data=df, palette="PRGn", ax=axes[1])
    sns.boxplot(x='struc', y='assd', hue='phase', data=df, palette="PRGn", ax=axes[2])

    plt.savefig(boxplots_file)
    plt.close()

    return 0
项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def fast_run(args):
    model = Model(args)
    feed = {}
    #feed[model.train_batch]=False
    xx,ss,yy=model.inputs(args.input_path)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    tf.train.start_queue_runners(sess=sess)
    xxx,sss,yyy=sess.run([xx,ss,yy])
    #print(yyy)
    #print(yyy[1])
    print('len:',xxx.shape)
    import matplotlib.cm as cm
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    plt.figure(figsize=(16,4))
    #plt.imshow()
    plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
    plt.savefig("img.jpg")
    plt.clf() ; plt.cla()
项目:OpenAPS    作者:medicinexlab    | 项目源码 | 文件源码
def _plot_old_pred_data(old_pred_data, show_pred_plot, save_pred_plot, show_clarke_plot, save_clarke_plot, id_str, algorithm_str, minutes_str):
    actual_bg_array = old_pred_data.result_actual_bg_array
    actual_bg_time_array = old_pred_data.result_actual_bg_time_array
    pred_array = old_pred_data.result_pred_array
    pred_time_array = old_pred_data.result_pred_time_array

    #Root mean squared error
    rms = math.sqrt(metrics.mean_squared_error(actual_bg_array, pred_array))
    print "                Root Mean Squared Error: " + str(rms)
    print "                Mean Absolute Error: " + str(metrics.mean_absolute_error(actual_bg_array, pred_array))
    print "                R^2 Coefficient of Determination: " + str(metrics.r2_score(actual_bg_array, pred_array))

    plot, zone = ClarkeErrorGrid.clarke_error_grid(actual_bg_array, pred_array, id_str + " " + algorithm_str + " " + minutes_str)
    print "                Percent A:{}".format(float(zone[0]) / (zone[0] + zone[1] + zone[2] + zone[3] + zone[4]))
    print "                Percent C, D, E:{}".format(float(zone[2] + zone[3] + zone[4])/ (zone[0] + zone[1] + zone[2] + zone[3] + zone[4]))
    print "                Zones are A:{}, B:{}, C:{}, D:{}, E:{}\n".format(zone[0],zone[1],zone[2],zone[3],zone[4])
    if save_clarke_plot: plt.savefig(id_str + algorithm_str.replace(" ", "") + minutes_str + "clarke.png")
    if show_clarke_plot: plot.show()

    plt.clf()
    plt.plot(actual_bg_time_array, actual_bg_array, label="Actual BG", color='black', linestyle='-')
    plt.plot(pred_time_array, pred_array, label="BG Prediction", color='black', linestyle=':')
    plt.title(id_str + " " + algorithm_str + " " + minutes_str + " BG Analysis")
    plt.ylabel("Blood Glucose Level (mg/dl)")
    plt.xlabel("Time (minutes)")
    plt.legend(loc='upper left')

    # SHOW/SAVE PLOT DEPENDING ON THE BOOLEAN PARAMETER
    if save_pred_plot: plt.savefig(id_str + algorithm_str.replace(" ","") + minutes_str + "plot.png")
    if show_pred_plot: plt.show()


#Function to analyze the old OpenAPS data
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot_joints_step(self, stamp):
        if self.plots == '':
            return

        mean_joints = self.get_mean_joints()
        std_joints = self.get_std_joints()
        f = plt.figure(facecolor="white", figsize=(16, 12))
        ax = f.add_subplot(111)
        ax.set_title('Mean +- {}std'.format(self.std_factor))
        color_id = 0
        for joint_id, joint_mean in enumerate(mean_joints):
            ax.plot(self.x, joint_mean, label='Joint {}'.format(joint_id), color=self.colors[color_id], linestyle='dashed')
            plt.fill_between(self.x, joint_mean - self.std_factor*std_joints[joint_id],
                             joint_mean + self.std_factor*std_joints[joint_id],
                             alpha=0.1, color=self.colors[color_id])
            color_id = (color_id + 1) % len(self.colors)
        plt.legend(loc='upper left')
        self._mk_dirs()
        filename = '_'.join(['joints', stamp])
        plt.savefig(join(self.plots, filename) + '.svg', dpi=100, transparent=False)
        plt.close('all')
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot_demos(self):
        if self.plots == '':
            return
        yt = self.Y.transpose(2, 0, 1)
        for joint_id, joint in enumerate(yt):
            f = plt.figure(facecolor="white", figsize=(16, 12))
            ax = f.add_subplot(111)
            ax.set_title('Joint {}'.format(joint_id))
            for demo_id, demo in enumerate(joint):
                ax.plot(self.x, demo, label='Demo {}'.format(demo_id))
            plt.legend()
            # Save or show plots
            self._mk_dirs()
            filename = 'demos_of_joint_{}'.format(joint_id)
            plt.savefig(join(self.plots, filename) + '.svg', dpi=100, transparent=False)
            plt.close('all')
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_convergence(history, prefix='', prefix2=''):
    plt.figure(figsize=(8, 5))
    ax = plt.subplot(111)

    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    plt.plot(history["TC"], '-', lw=2.5, color=tableau20[0])
    x = len(history["TC"])
    y = np.max(history["TC"])
    plt.text(0.5 * x, 0.8 * y, "TC", fontsize=18, fontweight='bold', color=tableau20[0])

    if history.has_key("additivity"):
        plt.plot(history["additivity"], '-', lw=2.5, color=tableau20[1])
        plt.text(0.5 * x, 0.3 * y, "additivity", fontsize=18, fontweight='bold', color=tableau20[1])

    plt.ylabel('TC', fontsize=12, fontweight='bold')
    plt.xlabel('# Iterations', fontsize=12, fontweight='bold')
    plt.suptitle('Convergence', fontsize=12)
    filename = '{}/summary/convergence{}.pdf'.format(prefix, prefix2)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    plt.savefig(filename, bbox_inches="tight")
    plt.close('all')
    return True
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.argsort(- mis[j, :])[:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.yticks(rotation=0)
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
项目:stock-eagle    作者:mtusman    | 项目源码 | 文件源码
def get_stock(symbol):
    last_year_date = datetime.strftime(datetime.now() - relativedelta(years=1), "%Y-%m-%d")
    date = get_last_trading_date()
    url = requests.get('https://www.quandl.com/api/v3/datasets/WIKI/{}.json?start_date={}&end_date={}'.format(symbol, last_year_date, date))
    json_dataset = url.json()
    json_data = json_dataset['dataset']['data']
    dates = []  
    closing = []
    for day in json_data:
        dates.append(datetime.strptime(day[0], "%Y-%m-%d"))
        closing.append(day[4])
    plt.plot_date(dates, closing, '-')
    plt.title(symbol)
    plt.xlabel('Date')
    plt.ylable('Stock Price')
    plt.savefig('foo.png')
项目:glassdoor-analysis    作者:THEdavehogue    | 项目源码 | 文件源码
def plot_hist(arr, title):
    '''
    Function to plot a histogram of scores for employers

    INPUT:
        arr: Array-like, scores
        title: String, title for plot

    OUTPUT:
        Histogram plot (saved in directory)
    '''
    fig = plt.figure(figsize=(6, 4))
    ax = fig.add_subplot(111)
    ax.set_title(title, fontsize=14)
    ax.set_xlabel('Overall Score', fontsize=10)
    ax.set_ylabel('Observations', fontsize=10)
    ax.hist(arr, bins=(len(arr) / 180))
    plt.tight_layout()
    plt.savefig('images/{}.png'.format(title.replace(' ', '_').lower()))
    return
项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def heatmap(src_sent, tgt_sent, att_weights, idx):

    plt.figure(figsize=(8, 6), dpi=80)
    att_probs = np.stack(att_weights, axis=1)

    plt.imshow(att_weights, cmap='gray', interpolation='nearest')
    #src_sent = [ str(s) for s in src_sent]
    #tgt_sent = [ str(s) for s in tgt_sent]
    #plt.xticks(range(0, len(tgt_sent)), tgt_sent, rotation='vertical')
    #plt.yticks(range(0, len(src_sent)), src_sent)
    plt.xticks(range(0, len(tgt_sent)),"")
    plt.yticks(range(0, len(src_sent)),"")
    plt.axis('off')
    plt.savefig("att_matrix_"+str(idx), bbox_inches='tight')
    plt.close()
项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def plot_trajectories(src_sent, src_encoding, idx):

    # encoding is (time_steps, hidden_dim)
    #pca = PCA(n_components=1)

    #pca_result = pca.fit_transform(src_encoding)
    times = np.arange(src_encoding.shape[0])
    plt.plot(times, src_encoding)
    plt.title(" ".join(src_sent))
    plt.xlabel('timestep')
    plt.ylabel('trajectories')
    plt.savefig("misc_hidden_cell_trajectories_"+str(idx), bbox_inches="tight")
    plt.close()
项目:pyballd    作者:Yurlungur    | 项目源码 | 文件源码
def plot_test_function(orderx,ordery):
    s = PseudoSpectralDiscretization2D(orderx,XMIN,XMAX,
                                ordery,YMIN,YMAX)
    X,Y = s.get_x2d()
    f_ana = f(X,Y)
    plt.pcolor(X,Y,f_ana)
    plt.xlabel('x',fontsize=16)
    plt.ylabel('y',fontsize=16)
    plt.xlim(XMIN,XMAX)
    plt.ylim(YMIN,YMAX)
    cb = plt.colorbar()
    cb.set_label(label=r'$\cos(x)\sin(2 y)$',fontsize=16)
    for postfix in ['.png','.pdf']:
        name = 'test_function'+postfix
        if USE_FIGS_DIR:
            name = 'figs/' + name
        plt.savefig(name,
                    bbox_inches='tight')
    plt.clf()