我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.imshow()。
def showData(self): print('???,????···') mask = imread(self.picfile) imgcolor = ImageColorGenerator(mask) wcc = WordCloud(font_path='./msyhl.ttc', mask=mask, background_color='white', max_font_size=200, max_words=300, color_func=imgcolor ) wc = wcc.generate_from_frequencies(self.data) plt.figure() plt.imshow(wc) plt.axis('off') print('?????') plt.show()
def imshow(tensor, imsize=512, title=None): image = tensor.clone().cpu() image = image.view(*tensor.size()) image = transforms.ToPILImage()(image) plt.imshow(image) if title is not None: plt.title(title) plt.pause(5)
def main(): # reading in an image #image = (mpimg.imread('test_images/solidWhiteRight.jpg') * 255).astype('uint8') #image = (mpimg.imread('test_images/solidWhiteCurve.jpg') * 255).astype('uint8') #image = (mpimg.imread('test_images/solidYellowCurve.jpg') * 255).astype('uint8') #image = (mpimg.imread('test_images/solidYellowCurve2.jpg') * 255).astype('uint8') #image = (mpimg.imread('test_images/solidYellowLeft.jpg') * 255).astype('uint8') image = (mpimg.imread('test_images/whiteCarLaneSwitch.jpg') * 255).astype('uint8') processImage = process_image(image) plt.imshow(processImage) plt.show() # Make video white_output = 'white.mp4' clip1 = VideoFileClip("solidWhiteRight.mp4") white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! white_clip.write_videofile(white_output, audio=False) # Make video yellow_output = 'yellow.mp4' clip2 = VideoFileClip('solidYellowLeft.mp4') yellow_clip = clip2.fl_image(process_image) yellow_clip.write_videofile(yellow_output, audio=False)
def vis_detections(im, class_name, dets, thresh=0.3): """Visual debugging of detections.""" import matplotlib.pyplot as plt im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.cla() plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.title('{} {:.3f}'.format(class_name, score)) plt.show()
def cvCaptureVideo(): capture = cv2.VideoCapture(0) if capture.isOpened() is False: raise("IO Error") cv2.namedWindow("Capture", cv2.WINDOW_NORMAL) while True: ret, image = capture.read() if ret == False: continue cv2.imshow("Capture", image) if cv2.waitKey(1) & 0xFF == ord('q'): break capture.release() cv2.destroyAllWindows() # Matplot???Web????????????
def decode_segmap(self, temp, plot=False): label_colours = self.get_pascal_labels() r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, self.n_classes): r[temp == l] = label_colours[l, 0] g[temp == l] = label_colours[l, 1] b[temp == l] = label_colours[l, 2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 if plot: plt.imshow(rgb) plt.show() else: return rgb
def decode_segmap(self, temp, plot=False): # TODO:(@meetshah1995) # Verify that the color mapping is 1-to-1 r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, self.n_classes): r[temp == l] = 10 * (l%10) g[temp == l] = l b[temp == l] = 0 rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = (r/255.0) rgb[:, :, 1] = (g/255.0) rgb[:, :, 2] = (b/255.0) if plot: plt.imshow(rgb) plt.show() else: return rgb
def get_masks(scans,masks_list): #%matplotlib inline scans1=scans.copy() maxv=255 masks=np.zeros(shape=(scans.shape[0],1,img_rows,img_cols)) for i_m in range(len(masks_list)): for i in range(-masks_list[i_m][3],masks_list[i_m][3]+1): for j in range(-masks_list[i_m][3],masks_list[i_m][3]+1): masks[masks_list[i_m][0],0,masks_list[i_m][2]+i,masks_list[i_m][1]+j]=1 for i1 in range(-masks_list[i_m][3],masks_list[i_m][3]+1): scans1[masks_list[i_m][0],0,masks_list[i_m][2]+i1,masks_list[i_m][1]+masks_list[i_m][3]]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]+i1,masks_list[i_m][1]-masks_list[i_m][3]]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]+masks_list[i_m][3],masks_list[i_m][1]+i1]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]-masks_list[i_m][3],masks_list[i_m][1]+i1]=maxv=255 for i in range(scans.shape[0]): print ('scan '+str(i)) f, ax = plt.subplots(1, 2,figsize=(10,5)) ax[0].imshow(scans1[i,0,:,:],cmap=plt.cm.gray) ax[1].imshow(masks[i,0,:,:],cmap=plt.cm.gray) plt.show() return(masks)
def test_penalty_env(env): import envs env = envs.create_env("Pong", location="bottom", catastrophe_type="1", classifier_file=save_classifier_path + '/0/final.ckpt') import matplotlib.pyplot as plt observation = env.reset() for _ in range(20): action = env.action_space.sample() observation, reward, done, info = env.step(action) plt.imshow(observation[:,:,0]) plt.show() print('Cat: ', info['frame/is_catastrophe']) print('reward: ', reward) if done: break
def _create_figure(predictions_dict): """Creates and returns a new figure that visualizes attention scores for for a single model predictions. """ # Find out how long the predicted sequence is target_words = list(predictions_dict["predicted_tokens"]) prediction_len = _get_prediction_length(predictions_dict) # Get source words source_len = predictions_dict["features.source_len"] source_words = predictions_dict["features.source_tokens"][:source_len] # Plot fig = plt.figure(figsize=(8, 8)) plt.imshow( X=predictions_dict["attention_scores"][:prediction_len, :source_len], interpolation="nearest", cmap=plt.cm.Blues) plt.xticks(np.arange(source_len), source_words, rotation=45) plt.yticks(np.arange(prediction_len), target_words, rotation=-45) fig.tight_layout() return fig
def plot_labeled_images_random(image_list, label_list, categories, n, title_str, ypixels, xpixels, seed, filename): random.seed(seed) index_sample = random.sample(range(len(image_list)), n) plt.figure(figsize=(2*n, 2)) #plt.suptitle(title_str) for i, ind in enumerate(index_sample): ax = plt.subplot(1, n, i + 1) plt.imshow(image_list[ind].reshape(ypixels, xpixels)) plt.gray() ax.set_title(categories[label_list[ind]], fontsize=20) ax.get_xaxis().set_visible(False); ax.get_yaxis().set_visible(False) if 1: pylab.savefig(filename, bbox_inches='tight') else: plt.show() # plot_unlabeled_images_random: plots unlabeled images at random
def plot_unlabeled_images_random(image_list, n, title_str, ypixels, xpixels, seed, filename): random.seed(seed) index_sample = random.sample(range(len(image_list)), n) plt.figure(figsize=(2*n, 2)) plt.suptitle(title_str) for i, ind in enumerate(index_sample): ax = plt.subplot(1, n, i + 1) plt.imshow(image_list[ind].reshape(ypixels, xpixels)) plt.gray() ax.get_xaxis().set_visible(False); ax.get_yaxis().set_visible(False) if 1: pylab.savefig(filename, bbox_inches='tight') else: plt.show() # plot_compare: given test images and their reconstruction, we plot them for visual comparison
def plot_compare(x_test, decoded_imgs, filename): n = 10 plt.figure(figsize=(2*n, 4)) for i in range(n): # display original ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + 1 + n) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) if 1: pylab.savefig(filename, bbox_inches='tight') else: plt.show() # plot_img: plots greyscale image
def plot_spectra(results): plt.figure(figsize=(10, 4)) plt.imshow( np.concatenate( [np.flipud(results['x'].T), np.flipud(results['xh'].T), np.flipud(results['x_conv'].T)], 0), aspect='auto', cmap='jet', ) plt.colorbar() plt.title('Upper: Real input; Mid: Reconstrution; Lower: Conversion to target.') plt.savefig( os.path.join( args.logdir, '{}.png'.format( os.path.split(str(results['f'], 'utf-8'))[-1] ) ) )
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys, block=True): # Colormaps: jet, Greys cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap) # Show confidences for i, cas in enumerate(cm): for j, c in enumerate(cas): if c > 0: plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000') f = plt.figure(1) f.clf() plt.title(title) plt.colorbar() tick_marks = np.arange(len(target_names)) plt.xticks(tick_marks, target_names, rotation=45) plt.yticks(tick_marks, target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show(block=block)
def plot_confusion_matrix(cm, clf_target_names, title='Confusion matrix', cmap=plt.cm.jet): target_names = map(lambda key: key.replace('_','-'), clf_target_names) for idx in range(len(cm)): cm[idx,:] = (cm[idx,:] * 100.0 / np.sum(cm[idx,:])).astype(np.int) plt.imshow(cm, interpolation='nearest', cmap=cmap) # plt.matshow(cm) plt.title(title) plt.colorbar() tick_marks = np.arange(len(clf_target_names)) plt.xticks(tick_marks, target_names, rotation=45) plt.yticks(tick_marks, target_names) # plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
def imshow_cv(label, im, block=False, text=None, wait=2): vis = im.copy() print_status(vis, text=text) window_manager.imshow(label, vis) ch = cv2.waitKey(0 if block else wait) & 0xFF if ch == ord(' '): cv2.waitKey(0) if ch == ord('v'): print('Entering debug mode, image callbacks active') while True: ch = cv2.waitKey(10) & 0xFF if ch == ord('q'): print('Exiting debug mode!') break if ch == ord('s'): fn = 'img-%s.png' % time.strftime("%Y-%m-%d-%H-%M-%S") print 'Saving %s' % fn cv2.imwrite(fn, vis) elif ch == 27 or ch == ord('q'): sys.exit(1)
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)): noise = np.random.normal(0,1,size=(example,randomDim)) generatedImage = generator.predict(noise) generatedImage = generatedImage.reshape(example,28,28) plt.figure(figsize=figsize) for i in range(example): plt.subplot(dim[0],dim[1],i+1) plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray') '''drop the x and y axis''' plt.axis('off') plt.tight_layout() if not os.path.exists('generated_image'): os.mkdir('generated_image') plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
def show_one_img_mask(data): w,h = 1918,1280 a = randint(0,31) path = "../input/test" data = np.load(data).item() name,masks = data['name'][a],data['pred'] img = Image.open("%s/%s"%(path,name)) #img.show() plt.imshow(img) plt.show() mask = np.squeeze(masks[a]) mask = imresize(mask,[h,w]).astype(np.float32) print(mask.shape,mask[0]) img = Image.fromarray(mask*256)#.resize([w,h]) plt.imshow(img) plt.show()
def plot_confusion_matrix(cm, col, title, cmap=plt.cm.viridis): plt.imshow(cm, interpolation='nearest', cmap=cmap) for i in range(cm.shape[0]): plt.annotate("%.2f" %cm[i][i],xy=(i,i), horizontalalignment='center', verticalalignment='center') plt.title(title,fontsize=18) plt.colorbar(fraction=0.046, pad=0.04) tick_marks = np.arange(len(col.unique())) plt.xticks(tick_marks, sorted(col.unique()),rotation=90) plt.yticks(tick_marks, sorted(col.unique())) plt.tight_layout() plt.ylabel('True label',fontsize=18) plt.xlabel('Predicted label',fontsize=18) #using flavor network to project recipes from ingredient matrix to flavor matrix
def imageM(*args,**kwargs): """ imageM(*args, **kwargs) This function essentially is a wrapper for the matplotlib.pyplot function imshow, such that the actual result looks like the default that can be obtained with the MATLAB function image. The arguments are the same as the arguments for function imshow. """ # The appearance of the image: nearest means that the image # is not smoothed: kwargs['interpolation'] = 'nearest' # keyword 'aspect' allows to adapt the aspect ratio to the # size of the window, and not the opposite (which is the default # behaviour): kwargs['aspect'] = 'auto' kwargs['origin'] = 0 plt.imshow(*args,**kwargs)
def visualize_gt_roidb(imdb, gt_roidb): """ visualize gt roidb :param imdb: the imdb to be visualized :param gt_roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped'] :return: None """ import matplotlib.pyplot as plt import skimage.io for i in range(len(gt_roidb)): im_path = imdb.image_path_from_index(imdb.image_set_index[i]) im = skimage.io.imread(im_path) roi_rec = gt_roidb[i] plt.imshow(im) for bbox, gt_class, overlap in zip(roi_rec['boxes'], roi_rec['gt_classes'], roi_rec['gt_overlaps']): box = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) plt.gca().add_patch(box) plt.gca().text(bbox[0], bbox[1], imdb.classes[gt_class] + ' {}'.format(overlap[0, gt_class]), color='w') plt.show()
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
def main(): imgs = glob('images/real_ana_finger*') frames = [plt.imread(x) for x in imgs] frame_a = frames[0] frame_b = frames[1] piv = pypiv.DirectPIV(frame_a, frame_b, window_size=32, search_size=32, distance=16) u, v = piv.correlate_frames() adapt_piv = pypiv.AdaptivePIV(piv, window_size=32, search_size=32, distance=16, ipmethod='cubic') u, v = adapt_piv.correlate_frames() adapt_piv = pypiv.AdaptivePIV(piv, window_size=32, search_size=32, distance=8, ipmethod='cubic') u, v = adapt_piv.correlate_frames() plt.imshow(u) plt.clim(-5, 5) plt.show()
def test_cluster_matrix_average(): import utils import basc import matplotlib.pyplot as plt blobs = generate_blobs() ism = utils.individual_stability_matrix(blobs, 100, 3) y_predict = utils.cluster_timeseries(blobs, 3, similarity_metric = 'correlation', affinity_threshold=0.0) cluster_voxel_scores, K_mask = utils.cluster_matrix_average(ism, y_predict) plt.imshow(K_mask) #%% TEST BASC.PY #Remaining Tests to write: #Join_group_stability #cluster_selection #individual_group_clustered_maps #ndarray_to_vol
def imagePloter(_feature_data, _im): fig = plt.figure(); fig.add_subplot(1, 2, 1); print("Processing Please Wait..."); im = misc.imread(_im); plt.imshow(im); n = 1; for cluster in _feature_data: points = cluster['points']; im = np.zeros((480, 640), dtype=int) im[points] = cluster['values'] #plt.figure(); #plt.imshow(im, cmap='gray') print("Writing Images..."); fig.add_subplot(1, 2, 2); plt.imshow(im); prefix = re.split('IR_|.pgm', _im)[0]; #print(prefix); postfix = re.split('IR_|.pgm', _im)[1]; #print(postfix); plt.savefig(prefix + postfix + "_Cluster_" + str(n) + ".png"); n = n + 1; print("Done.."); return
def CropLowerBoundary(img): # img_gray = ToGrayImage(path) _,img_bi = cv2.threshold(img,60,255,cv2.THRESH_BINARY) threshold_rate = 0.95 threshold_row = -1 row,col = img_bi.shape for tmp_r in range(row-1,-1,-1): tmp_sum = sum(img_bi[tmp_r]) rate = float(tmp_sum)/255/col # print(rate) if rate>threshold_rate: threshold_row = tmp_r break img = img[0:threshold_row,:] # plt.imshow(img,"gray") # plt.show() return img
def vis_square(data): """Take an array of shape (n, height, width) or (n, height, width, 3) and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)""" # normalize data for display data = (data - data.min()) / (data.max() - data.min()) # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = (((0, n ** 2 - data.shape[0]), (0, 1), (0, 1)) # add some space between filters + ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one) data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imshow(data, interpolation='nearest'); plt.axis('off')
def __plot_canvas(self, show, save): if len(self.result) == 0: raise Exception('Please run blur_image() method first.') else: plt.close() plt.axis('off') fig, axes = plt.subplots(1, len(self.result), figsize=(10, 10)) if len(self.result) > 1: for i in range(len(self.result)): axes[i].imshow(self.result[i]) else: plt.axis('off') plt.imshow(self.result[0]) if show and save: if self.path_to_save is None: raise Exception('Please create Trajectory instance with path_to_save') cv2.imwrite(os.path.join(self.path_to_save, self.image_path.split('/')[-1]), self.result[0] * 255) plt.show() elif save: if self.path_to_save is None: raise Exception('Please create Trajectory instance with path_to_save') cv2.imwrite(os.path.join(self.path_to_save, self.image_path.split('/')[-1]), self.result[0] * 255) elif show: plt.show()
def fast_run(args): model = Model(args) feed = {} #feed[model.train_batch]=False xx,ss,yy=model.inputs(args.input_path) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) tf.train.start_queue_runners(sess=sess) xxx,sss,yyy=sess.run([xx,ss,yy]) #print(yyy) #print(yyy[1]) print('len:',xxx.shape) import matplotlib.cm as cm import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.figure(figsize=(16,4)) #plt.imshow() plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet) plt.savefig("img.jpg") plt.clf() ; plt.cla()
def plot_face_bb(p, bb, scale=True, path=True, plot=True): if path: im = cv2.imread(p) else: im = cv2.cvtColor(p, cv2.COLOR_RGB2BGR) if scale: h, w, _ = im.shape cv2.rectangle(im, (int(bb[0] * h), int(bb[1] * w)), (int(bb[2] * h), int(bb[3] * w)), (255, 255, 0), thickness=4) # print bb * np.asarray([h, w, h, w]) else: cv2.rectangle(im, (int(bb[0]), int(bb[1])), (int(bb[2]), int(bb[3])), (255, 255, 0), thickness=4) print "no" if plot: plt.figure() plt.imshow(im[:, :, ::-1]) else: return im[:, :, ::-1]
def plot_grid(images,w=10,path="plan.png",verbose=False): import matplotlib.pyplot as plt l = 0 images = fix_images(images) l = len(images) h = int(math.ceil(l/w)) plt.figure(figsize=(w*1.5, h*1.5)) for i,image in enumerate(images): ax = plt.subplot(h,w,i+1) try: plt.imshow(image,interpolation='nearest',cmap='gray',) except TypeError: TypeError("Invalid dimensions for image data: image={}".format(np.array(image).shape)) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) print(path) if verbose else None plt.tight_layout() plt.savefig(path) plt.close() # contiguous image
def plot_grid2(images,w=10,path="plan.png",verbose=False): import matplotlib.pyplot as plt images = fix_images(images) l = images.shape[0] h = int(math.ceil(l/w)) margin = 3 m_shape = (margin + np.array(images.shape[1:])) all_shape = m_shape * np.array((h,w)) figure = np.ones(all_shape) print(images.shape,h,w,m_shape,figure.shape) if verbose else None for y in range(h): for x in range(w): begin = m_shape * np.array((y,x)) end = (m_shape * (np.array((y,x))+1)) - margin # print(begin,end,y*w+x) if y*w+x < len(images): figure[begin[0]:end[0],begin[1]:end[1]] = images[y*w+x] plt.figure(figsize=all_shape[::-1] * 0.01) plt.imshow(figure,interpolation='nearest',cmap='gray',) print(path) if verbose else None plt.tight_layout() plt.savefig(path)
def display_classes(png, images, classes, ncol=4): """ Draw a number of images and their predictions Example: images = data[1][:12] classes = model.predict_classes('classes.png', images) """ fig = plt.figure() nrow = len(images) / ncol if len(images) % ncol > 0: nrow = nrow + 1 def draw(i): plt.subplot(nrow,ncol,i) plt.imshow(images[i].reshape(28,28), cmap='gray', interpolation='none') plt.title('Predicted: %s' % classes[i]) [ draw(i) for i in range(0,len(images)) ] plt.tight_layout() plt.savefig(png)
def showHeightMap(x,y,z,zi): ''' show height map in maptplotlib ''' zi=zi.transpose() plt.imshow(zi, vmin=z.min(), vmax=z.max(), origin='lower', extent=[ y.min(), y.max(),x.min(), x.max()]) plt.colorbar() CS = plt.contour(zi,15,linewidths=0.5,colors='k', extent=[ y.min(), y.max(),x.min(), x.max()]) CS = plt.contourf(zi,15,cmap=plt.cm.rainbow, extent=[ y.min(), y.max(),x.min(), x.max()]) z=z.transpose() plt.scatter(y, x, c=z) # achsen umkehren #plt.gca().invert_xaxis() #plt.gca().invert_yaxis() plt.show() return
def animpingpong(self): obj=self.Object img=None if not obj.imageFromNode: img = cv2.imread(obj.imageFile) else: print "copy image ..." img = obj.imageNode.ViewObject.Proxy.img.copy() print "cpied" print " loaded" # print (obj.blockSize,obj.ksize,obj.k) # edges = cv2.Canny(img,obj.minVal,obj.maxVal) # color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB) # edges=color # kernel = np.ones((obj.xsize,obj.ysize),np.uint8) opening = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel, iterations = obj.iterations) if True: print "zeige" cv2.imshow(obj.Label,opening) print "gezeigt" else: from matplotlib import pyplot as plt plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(dst,cmap = 'gray') plt.title('Corner Image'), plt.xticks([]), plt.yticks([]) plt.show() print "fertig" self.img=opening
def animpingpong(self): obj=self.Object img=None if not obj.imageFromNode: img = cv2.imread(obj.imageFile) else: print "copy image ..." img = obj.imageNode.ViewObject.Proxy.img.copy() print "cpied" print " loaded" # print (obj.blockSize,obj.ksize,obj.k) edges = cv2.Canny(img,obj.minVal,obj.maxVal) color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB) edges=color if True: print "zeige" cv2.imshow(obj.Label,edges) print "gezeigt" else: from matplotlib import pyplot as plt plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(dst,cmap = 'gray') plt.title('Corner Image'), plt.xticks([]), plt.yticks([]) plt.show() print "fertig" self.img=edges
def animpingpong(self): obj=self.Object img=None if not obj.imageFromNode: img = cv2.imread(obj.imageFile) else: print "copy image ..." img = obj.imageNode.ViewObject.Proxy.img.copy() print "cpied" print " loaded" # print (obj.blockSize,obj.ksize,obj.k) # edges = cv2.Canny(img,obj.minVal,obj.maxVal) # color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB) # edges=color # kernel = np.ones((obj.xsize,obj.ysize),np.uint8) closing = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel, iterations = obj.iterations) if True: print "zeige" cv2.imshow(obj.Label,closing) print "gezeigt" else: from matplotlib import pyplot as plt plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(dst,cmap = 'gray') plt.title('Corner Image'), plt.xticks([]), plt.yticks([]) plt.show() print "fertig" self.img=closing
def animpingpong(self): print self print self.Object print self.Object.Name obj=self.Object img = cv2.imread(obj.imageFile) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray = np.float32(gray) dst = cv2.cornerHarris(gray,3,3,0.00001) dst = cv2.dilate(dst,None) img[dst>0.01*dst.max()]=[0,0,255] from matplotlib import pyplot as plt plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(dst,cmap = 'gray') plt.title('Corner Image'), plt.xticks([]), plt.yticks([]) plt.show()
def render(self, show=True, new_figure=True): """Render the quantized image :param bool show: if the quantized image is also to be shown and not only drawn. :param bool new_figure: if a new figure is to be used. """ if new_figure: plt.figure() plt.clf() plt.title('{method} ({n_colors})'.format( method=self._method, n_colors=self._n_colors)) plt.imshow(self._quantized_raster / 255.0) plt.draw() if show: plt.show()
def main(): # prepare object points nx = 8#TODO: enter the number of inside corners in x ny = 6#TODO: enter the number of inside corners in y # Make a list of calibration images fname = './calibration_wide/GOPR0058.jpg' img = cv2.imread(fname) plt.imshow(img) # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) # If found, draw corners if ret == True: # Draw and display the corners cv2.drawChessboardCorners(img, (nx, ny), corners, ret) plt.imshow(img) plt.show()